C46 ]

V. The Construction and Analysis of geometrical Propositions,
determining the Positions assumed by bomogeneal Bodies
which float freely, and at rest, on a Fluid’s Surface ; also de-
termining the Stability of Ships, and of other floating Bodies.
By George Atwood, Esq. F. R. S.

Read February 18, 1796.

To investigate the positions assumed by homogeneal bodies
which float freely, and at rest, on a fluid’s surface, it is neces-

sary, in the first place, to form a just conception of the several

principles on which those positions depend. ‘

The proportion of the immersed part to the whole magni-
tude of a floating body * will always be obtained, from having
given the specific gravity of the solid in respect to that of the
fluid ; since it is a known law of hydrostatics, that the im-
mersed part of the solid is to the whole magnitude, in the
proportion of those specific gravities. But a solid may be
immersed in a fluid numberless different ways, so that the part
immersed shall be to the whole magnitude in the given pro-
portion of the specific gravities, and yet the solid shall not
rest permanently in any of these positions. The reasons are
obvious. The floating body is impelled downward by its
weight, acting in the direction of a vertical line, which passes
through the centre of gravity; the pressure of the fluid, by

* In these pages the floating bodies are always understood to be homogeneal, un-
less the contrary be mentioned.
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which the solid is supported, acts upward, in the direction of a
vertical line (usually called the line of support), which passes
through the centre of gravity of the part immersed : unless,
therefore, these two lines are coincident, so that the two cen-
tres of gravity shall be in the same vertical line, it is evident
that the solid thus impelled, must revolve on an axis until it
finds a position in which the equilibrium of floating will be
permanent.

From these observations it appears, that to ascertain the
positions in which a solid body floats permanently on the sur-
face of a fluid, it is requisite that the specific gravity of the
floating body should be known, in order to fix the propor-
tion of the part immersed to the whole : secondly, it is neces-
sary to determine, by geometrical or analytical methods, in
what positions the solid can be placed on the surface of the
fluid, so that the centre of gravity of the floating body, and
that of the part immersed, may be situated in the same verti-
cal line, while a given proportion of the whole volume is
immersed under the fluid’s surface.
~ These particulars having been determined, evidently re-
duce the statement of the problem into a narrow compass;
but they are not alone sufficient to limit it: for although it
has been shewn that a body cannot float permanently on a
fluid unless the two centres of gravity, that have been men-
tioned, are situated in the same vertical line, it does not follow
that, whenever those centres of gravity are so situated, the
solid will float permanently in that position:* consistently

* Admitting any proposition to be true, the converse of the proposition may be
either true generally, or with exceptions. To distinguish the cases in which it is true
from those in which it fails, requires a separate demonstration or investigation,
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with this observation, positions may be assigned, in which a
solid is immersed in a fluid to the true depth according to its
specific gravity, and the centre of gravity of the solid and
‘that of the part immersed are in the same vertical line, yet
the solid does not rest in any of these positions, but assumes
some other in which it will continue permanently to float.
To make this evident, a very obvious instance may be referred
to. Suppose a cylinder, the specific gravity of which is to
that of a fluid on which it floats as g to 4; and let the axis of
the g:ylihder be to the diameter of the base as 2 to 1: if this
cylinder is placed on the fluid with its axis vertical, it will
sink to a depth equal to a diameter and a half of the base; and
as long as the axis is sustained in a vertical position by ex-
ternal force, the centre of gravity of the solid, and the centre
of the immersed part, will be situated in the same vertical
line: but the solid will not float permanently in that posi-
tion ; for as soon as external support is removed, it falls from
its upright position, and remains floating with the axis hori-
zontal. If the axis of the cylinder is made only I instead of
twice the diameter of the base, the solid being placed with its
axis vertical, will sink to the depth of 3 of a diameter, and
will float permanently in that position. Even if the axis
should be placed not exactly coincident with the vertical, but
in a direction somewhat inclined to that line, the solid will
change its position until it settles permanently with the axis
perpendicular to the horizon.

The cylinder here instanced is caused either to float per-
manently with its axis vertical, or to overset, according to the
different proportions between the length of the axis and the
diameter of the base : although an exact estimate of the effects
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produced by altering these proportions, cannot be obtained
except by mathematical investigation (a subject to be consi-
dered in some of the following pages), yet a general idea of
the causes by which so remarkable a difference is occasioned
in the floating position of the two cylinders, will appear ob-
vious by attending to the changes which take place in the
position of the line of support, while the solid is inclined from
the upright through a small angle. For whenever the line of
support, in the direction of which the force of the fluid’s pres-
sure acts, does not pass through the centre of gravity of the
floating body, that force must generate a motion of rotation
round an horizontal axis which passes through the centre of
gravity of the solid ; and must cause an elevation of those
parts of the solid which are on the same side of the axis of
motion with the line of support, and consequently must de-
press those parts which are situated on the contrary side of
that axis. Admitting, therefore, that the solid is adjusted
with its centre of gravity and the centre of the immersed part
precisely to the same vertical line, and that a small inclina-
tion takes place round the axis of motion; it will depend on
the position of the line of support, whether that inclination
shall be counteracted, so as to restore the solid to its upright
position, or shall be augmented ; in which latter case the so-
lid oversets. If the nature of the figure should be such as
causes the line of support to be moved toward those parts
which are immersed by the inclination, that inclination will
be counteracted, because the pressure of the fluid generates
angular motion in a direction contrary to that in which the
solid is inclined ; but if the figure is such as causes the line of
support to be moved toward those parts of the solid which
MDCCXCVI. H
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are elevated by the inclination, the force of the fluid’s pressure
must continually augment the inclination ; or, in other words,
will cause the solid to overset, or change its position, until it
settles in some other, in which the equilibrium is permanent.

We observe, therefore, that a solid floats permanently ina
given position, only because the smallest inclination from that
position creates a force by which the inclination is imme-
diately counteracted, and the solid becomes restored to its up-
right position ; and consequently, since the inclination is coun-
teracted while of evanescent magnitude, no sensible deviation
from the upright can take place: in cases of instability, the
solid oversets, although placed on a fluid with the centre of
gravity of the solid and that of the part immersed in the same
vertical line, because the smallest deviation or inclination from
that position creates a force by which the inclination is aug-
mented. And since various causes concur in preventing the
two centres from remaining adjusted to the vertical with a
precision absolutely mathematical, it follows that the least or
evanescent inclination here mentioned must necessarily sub-
sist, and being continually augmented by the fluid’s pressure,
must become a sensible rotation, by which the solid oversets
from its upright position.

In either case, that is, whether the solid floats permanently,
or oversets, if it is placed on the surface of a fluid, so that the
centre of gravity of the solid and the centre of gravity of the
part immersed shall be in the same vertical line, the solid is
said to be in a position of equilibrium : and from the preced-
ing observations it appears, that there are three species of
equilibrium in which a solid may be situated when the two
centres of gravity just mentioned are in the same vertical line.



of floating Bodies, and the Stability of Ships. 51

1st.* The equilibrium of stability, in which the solid floats
permanently in a given position.

2dly."The equilibrium of instability, in which case the solid,
although its centre of gravity and that of the part immersed
are in the same vertical line, spontaneously oversets, unless
sustained by external force. This kind of equilibrium is si-
milar to that which subsists when a needle, or other sharp-
pointed body, is placed vertically on a smooth horizontal sur-
face.

gdly. The third species, being a limit between the two
former, is called the equilibrium of indifference, or the insen-
sible equilibrium, in which the solid rests on the fluid indif-
ferent to motion, without tendency to right itself when in-
clined, or to incline itself further.,

These different kinds of equilibrium may perhaps be more
clearly perceived, by referring to the instance in which a cy-
linder was supposed to be placed on the surface of a fluid with
the axis vertical. If the axis is assumed double the diameter
of the base, the solid oversets, the equilibrium of position being
that of instability : but if the length of the axis is only half
the diameter of the base, the solid floats permanently with the
axis vertical. It seems evident, therefore, that there must be
some intermediate proportion between the cylinder’s axis and
the diameter of the base, greater than 1 to ¢, and less than ¢
to 1, which will correspond to the case intermediate, where
stability ceases, and instability begins : this is the precise pro-
portion when the equilibrium is of the species called the equi-
librium of indifference, or the insensible equilibrium.

When a solid body floats permanently on the surface of a

¢ Evvisr. Théorie complette de la Construction et Mancewvre desVaisseauz, chap. iv.

He
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fluid, and external force is applied to incline it from its posi-
tion, the resistance opposed to this inclination is termed the
stability of floating. It is obvious to every one’s experience,
that some floating bodies are more easily inclined from their
quiescent position than others; that, after having been in-
clined, some will return to their original situation with more
force and celerity than others; a difference particularly ob-
servable in ships at sea, in some of which a given impulse of
the wind will cause a much greater inclination from the
perpendicular than in others. As this property of opposing re-
sistance to heeling or pitching, when regulated to its due
quantity and proportion, has been deemed of material conse-
quence in the construction of vessels, several eminent mathe-
maticians have been induced to investigate rules, by which the
stability of ships may be inferred, independently of any refe-
rence to trial, from knowing their weights and dimensions
only. It must, however, be acknowledged, that the theorems
which have been given on this subject, in the works of Mons.
BouGuer,* EuLER,} FrEp. CuarMaN,T and other writers,
for determining the stability of ships, are founded on a sup-
position that the inclinations from their quiescent positions are
evanescent, or, in a practical sense, very small. But as ships
at sea are known to heel through angles of 10°, 20°, or even
gc°, a doubt may arise how far the rules demonstrated on the
express condition, that the angles of inclination are of evanes-~
cent magnitude, should be admitted as practically applicable
in cases where the inclinations are so great.

#* Boucgusrr, Liv. 1. sec.iii, chap. iv.

+ EvLer, Théorie complette de la Construction et Manaeuwvre des Vaisseaux, chap.
iv, and chap. v.

t Traité dela Construction des Vaisseaux par Frep, CHAPMAN, chap, ii. p. 17.
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To put this matter in a clear pomt of view, let a case be
assumed. Suppose two vessels to be of ‘the same wei; ght and
dimensions in every respect, except that the sides of one of
these vessels shall project more than those of the other, the.
projections commencing from the line coincident with the
‘water’s surface. According to the theorems of Boucukr and
other writers, the stability will be the same in both ships, which
is in fact true, on the supposition that their inclinations from
the perpendicular are extremely small angles: but when the
ships heel to 15° or 20°, the stabilities of the two vessels must
evidently be very different. Even supposing the stability of a
ship A to be greater than that of a ship B, when the angles of
heeling are very small, it may happen in cases easily supposable
that when both ships are heeled to a considerable angle of in-
clination, the stability of the ship B shall exceed that of the
ship A. Admitting, therefore, that the theory of statics can be
applied with any effect to the practice of naval architecture, it
seems to be necessary that the rules investigated for determin-
ing the stability of vessels should be extended to those cases
in which the angles of inclination are of any magnitude Iikely
to occur in the practice of navigation.

When a solid is placed on the surface of a lighter fluid, at
the proper depth corresponding to the relative gravities, it
cannot change its position by the combined actions of its
wéight and the fluid’s pressure, except by revolving on some
horizontal axis which passes through the centre of gravity.
Various axes may be drawn through the centre of gravity of
a floating body in a direction parallel to the horizon: but
since the motion of the solid respecting one axis only, can be
the subject of the same investigation (except in extreme cases
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not to be considered in this place), the figure of the floating
body, and the particular object of inquiry, must determine to
which of these axes the motion of the solid is to be referred,
when it changes its position : thus, suppose a square beam of
timber, the specific gravity of which is to that of water as 1
to 2, should be placed on the surface of that fluid with one of
the flat surfaces parallel to the horizon (the length being as-
sumed considerably greater than the breadth), no motion of
rotation can take place round the transverse axis, by which
the extremities of the beam would be elevated or depressed :
but the solid will spontaneously revolve in this instance round
the longer axis, changing its position until it settles with an
angle upward..

In like manner, if the same solid should be placed horizon-
tally on the surface of the water with an angle upward, it will
not spontaneously change its position; but if one extremity of
the beam should be forcibly elevated, and the other depressed,
so as to incline the longer axis to the horizon, as soon as all
external force is removed, the beam will revolve on a transverse
horizontal axis, passing through the centre of gravity, and per-
pendicular to the longer axis, until it settles in such a position
as to leave the longer axis horizontal. These are instances in
which the figure of the body, and the particular nature of the
case, determine the axis round which the solid revolves, while
it changes its situation on a fluid’s surface; this axis is called,
for the sake of distinction, the axis of motion. |

The axis of motion, round which the solid revolves, having
been determined, and the specific gravity being known, it ap-
pears from the preceding observations, that the positions of
permanent floating will be obtained, first by finding the
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several positions of equilibrium through which the solid may
be conceived to pass, while it revolves round the axis of mo-
tion; and secondly, by determining in which of those posi-
tions the equilibrium is permanent, and in which of them it is
momentary and unstable.

In proceeding to investigate the principles which are the ob-
Jects of the present inquiry, it will be convenient in the first
instance to consider the floating body to be some homogeneal
solid of regular figure, and uniform shape and dimensions, in
respect of the axis of motion throughout. If such a solid is
supposed to be cut through by vertical planes in a direction
perpendicular to the akis of motion, the sections of these
planes with the solid will be areas precisely equal and similar.
Let EDHF (Tab. IIL fig. 1.) represent the vertical section
of such a solid, which passes through the centre of gravity G
in a direction perpendicular to the axis of motion. The solid
floats on the surface of a fluid TABL ; consequently ADHB
represents the part immersed under the fluid’s surface; O is
the centre of gravity of the part immersed, and the line GOC
is assumed perpendicular to the horizontal line AB. We are
in the next place to suppose that this solid is inclined round
the axis of motion from its former position through an angle
KGS (fig. 2.);* so that the line KC which was before ver-

* When this inclination takes place, the centre of gravity G, through which the
axis of motion passes, is not necessarily fixed, but must evidently in most cases change
its place, since the total volume immersed before the inclination is always equal to that
which is immersed after the inclination ; and from this cause such change of place en~
sues: but the motion of the axis, and of the point G, is wholly independent of the
reasoning in this and the subsequent constructions and investigations ; the object of
which is to ascertain the angular motion round the said axis, and the several conse-
quences thereof, and is no ways connected with the motion of the axis itself. This note
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tical, may be now transferred to the position SL, which is in-
clined to the vertical line KC at the angle KGS: moreover
the line A B, which was before horizontal, is transferred so as
- to coincide with the line IN, being inclined to its former po-
sition in the angle NX P, which is equal to KGS: and con-
sequently the whole space ADH B, becomes transferred so as
to coincide with the space IRMN, and the volume immersed
under the fluid’s surface is WRMN P. If in the line SL,
GE is taken equal to GO it is evident that in consequence
of the inclination, the point O, which is the centre of gravity
of the space ADHB, will be transferred to the point E, which
is the centre of gravity of the equal space IR M N ; and the
pressure of the fluid would act. on the solid in the direction of
a vertical line passing through the point E, if the space IRMN
was the volume immersed under the fluid’s surface; but in
consequence of the inclination of the solid through the angle
KGS, the volume N X P, which was before above the fluid’s
surface, will now become immersed under it; and the volume
IW X, which was before under the surface, will become ele-
vated above it. It is evident, that on both these accounts,
that is, both by the addition of the volume NXP, and the
abstraction of the volume I WX, the centre of gravity E of
the space IRMN will be transferred towards those parts of the
solid which have become more immersed under the fluid in
consequence of the inclination.

Suppose the centre of gravity of the volume immersed,
WRMP, to be situated at the point Q: through Q draw

is here inserted in preference to adapting the construction so as to express the altera-
tion in the position of the axis, which would only have the effect of embarrassing the

construction with useless lines.
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QS parallel to GO ; through E draw EY perpendicular to
5Q; and through G draw z GZ perpendicular to SQ. Then,
since the point Q is the centre of gravity of the part immersed, |
the pressure of the fluid will act in the direction of the verti-
cal line QS, with a force equal to the body’s weight, and by
the principles of mechanics will have prec/isely the same effect
to turn the solid round its axis as if the same force was ap-
plied immediately at the point Z, acting in the same direction
QS. Since, therefore, the effect of the fluid’s pressure acting
in the direction of a vertical line which passes through the
centre of gravity Q, no way depends on the absolute position
of that point, but on the perpendicular distance GZ, between
the two vertical lines GO and SQ only, in proceeding to ascer-
tain, by geometrical construction, the several positions which
bodies assume on a fluid’s surface, and their stability of float-
ing, the determination of the absolute position of the point
Q, or centre of gravity of the immersed part, will not be ne-
cessary ; the perpendicular distance GZ between the two ver-
tical lines which pass through the centres of gravity of the
solid, and of the part immersed, being sufficient for obtaining
all the results that are required.

The part immersed, before the inclination of the solid took
place, is ADHB; when the solid has been inclined through
the angle KGS, the part immersed is WRM P, which is the
volume I R MN diminished by the space I WX, and aug-
mented by the space NXP. But since the volume immersed
under the fluid’s surface must always be of the same magni-
‘tude while the solid’s weight continues unaltered, it follows,
that whatever additional space is immersed under the surface
in consequence of the inclination, an equal space must be ele-

MDCCXCVI. C I
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vated above it; consequently, whatever may be the position
of the point of intersection X, the volume I X'W must be
equal to the volume PXN. Suppose 4 to be the centre of
gravity of the space IXW, and let d be the centre of gravity
of the space N X P; then, the part immersed WRMP, is
equal to the space IRMN, diminished by the space IWX,
considered as concentered in the point ¢, and increased by
the equal space N X P, concentered in the point d; conse=
quently the centre of gravity Q of the space WRMP will
be at such a distance from E, the centre of gravity of the
space IRMN, as corresponds to the alteration occasioned by
removing the volume I W X, concentered in the point a, to
the point d. These are the data from which the perpendi-
cular distance G Z, of the two vertical lines KO, SQ, pass-
ing through the centres of gravity G and O, is to be obtained
in the manner following : through the centres of gravity a
and b, draw the lines ab, dc, perpendicular to the horizontal
line AB; through E draw the indefinite line EY parallel
to AB, and in the line EY, take a part ET, so that ET shall
be to the line ¢ as the volume IWX, or its equal NXP, is
to the whole volume immersed, WRMP or ADHB : through
the point T thus found, draw the line F TS parallel to the
vertical line G O; the centre of gravity Q, of the immersed
part, will be somewhere in the line FS; and because ER
is to EG, as the sine of the given angle of inclination is to
radius, the line GO = EG being supposed given, the line ER
will therefore be known, and being subtracted from the line
ET before found, will leave RT or GZ the perpendicular dis~
tance between the two vertical lines, which it was required to
determine by geometrical construction, and which has been
accordingly determined.



of floating Bodies, and the Stability of Ships. 59

The demonstration of this construction is founded on an
obvious and elementary principle of mechanics.—It is this.—
The common centre of gravity of any system of bodies (consi-
dered as heavy points or centres of gravity), being given in
position, if one of these bodies should be moved from its
place, the corresponding motion of the common centre of gra-
vity, estimated in any given direction, will be to the motion
of the aforesaid body, estimated in the same direction, as the
weight of the body moved is to the weight of the whole sys-
tem. To apply this proposition. The volume IRMN (fig. 2.)
may be assumed as a system of bodies, of which the common
centre of gravity is E. One of the bodies composing this
system, namely, the volume I W X, concentered in the point
a, is transferred in consequence of the inclination of the solid
through the angle SG K from the point a to the point d, in
which the equal volume N X P is concentered : this will have
the effect of moving the common centre of gravity of the
system E. But it is required to find how much the position
of this centre E has been changed in the direction EY parallel
to A B, which is the given direction stated in the proposi-
tion. The motion of the centre of gravity a, from a to d, es-
timated in the given horizontal direction, is b¢: then, accord-
ing to the mechanical proposition, as the volume WR M P
or ADHB is to the volume I WX or NXP, so is the line
bc to ET, the corresponding motion of the centre of gravity
E estimated in the given horizontal direction; consequently
if a line FTS is drawn through the point T parallel to the
vertical line GO, the centre of gravity of the immersed part
Q must be situated somewhere in the iine FTS: subtract-
ing from ET the line ER (which is the sine of the given

Ie
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angle of inclination EG O when EO is the radius), there will
remain the line RT or GZ, which is therefore the distance
between the vertical lines GO, SZT, passing through the
centres of gravity G and Q, as determined by the construction.

Let the whole volume of the immersed part of the solid be
denoted by the letter V; suppose the space NXP, or volume
immersed in consequence of the inclination, to be A; make
GO =d; and the sine of the angle of inclination KG S (to
radius 1) = s ; also make bc =b. Then since by the propo-
sition; asb: ET :: V: A, it appears that ET = D‘-(,f H

And since as ER:EG=GO : :s0 is s: 1, we obtain
ER=ds; ‘

Wherefore RT=ET —ER =2%* — ds= G Z.

This result is founded on a supposition that the figure of
the floating solid is uniform in respect of the axis of motion ;
if the solid should be of an irregular form, the construction
and demonstration will be precisely the same as in the pre-
ceding case, the following particulars being attended to; the
volume, or space immersed in consequence of the inclination,
will no longer be represented by the area NX P, but must be
obtained by a calculation founded on the shape and dimen-
sions of the said volume ; moreover the centres of gravity of
the volumes PXN, IXW, will not now correspond with the
centres of gravity of the areas PXN, IXW, and must there-
fore be obtained from the known rules, or from methods of
approximation by which the position of the centre of gravity
is determined in solid bodies.

The angle of inclination KGS is given by the supposition,
and the solid contents of the equal volumes denoted by IXW,
NXP, with the distance bc of the centres of gravity a and 4,
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estimated in the direction of the horizontal line AB, having
been determined, let the volume NXP be put = A ; and bc ==
b; the other quantities signifying as before ; the perpendicu-
lar distance GZ = é‘—fé —ds, will be known. It is to be observed,
‘that this proposition in general is equally applicable to hetero-
geneal bodies as to those which are homogeneal.

By this proposition the stability of vessels, and other bodies
floating on a fluid’s surface, at any angle of inclination, from
a given position of equilibrium, is obtained. For the measure
of the stability is precisely a force equal to the fluid’s pres-
sure; that is, equal to the vessel’s weight,* applied perpendi-
cularly at the distance GZ from the axis of motion, to incline
the solid round that axis. | '

From the same proposition, the different positions assumed
by bodies which float freely on a fluid’s surface, may be as-
certained ; in some cases most easily by geometrical construc-
tion ; in others, by analytical investigation. It has been al-
ready observed, that to ascertain the various positions in which
a body will float permanently on the surface of a fluid, it is
necessary first, to have given the ratio of the specific gravities,
in order ‘to fix the proportion of the part immersed to the
whole ; and secondly, the several positions are to be ascer-
tained in which the solid may rest on the surface of a fluid,
so that the centres of gravity of the solid and of the part im-
mersed may be in the same vertical line. The general expression

for the line RT (fig. 2.) or GZ, is GZ=21%"—ds; by put-
ting this quantity -I%-?- — ds=o0, an equation arises, from which

one or more values of s will be obtained = the sine of the angle
through which the solid has been inclined from a position of

~ ® The weight of a vessel implies the weight of the ship and lading.
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equilibrium, when the line GZ=o; that is, when the two cen-
tres of gravity, G and Q, are again situated in the same vertical
line; or in other words, when the solid is again in a position
of equilibrium. By this method of proceeding, the several
positions of equilibrium may be determined ; it only, there-
fore, remains to discover in which of these positions the equi-
librium is permanent, and in which of them it is momentary
and unstable. This circumstance will depend on the species
of equilibrium in which the solid is originally placed previously
to the inclination, which, for the sake of more clearly stating
the principles of stability, may be supposed known, although
the rules for ascertaining this point have not yet been consi-
dered, but will appear in the pages which next follow. As-
suming then the species of equilibrium, in which a solid is ori-
ginally placed on the surface of a fluid, to be known, let that
equilibrium be supposed permanent, or the equilibrium of
stability ; and let the solid be conceived to be inclined round
the axis of motion, through a given angle A, till it becomes
situated again in a position of equilibrium; in which case the
centres of gravity of the solid, and of the part immersed, will
again be in the same vertical line. Since during this inclina-
tion, the fluid’s pressure acts with a force proportional to the
line RT or GZ, (fig. ¢.) to diminish the angular distance from
the original position of equilibrium, it follows that the same
force must act on the solid, so as to augment the inclination,
or angular distance from the second position of equilibrium,
in which the solid is situated after it has revolved through the
entire angle A, or any part thereof, from its original situation ;
from which observations it is evident, that the second position
of equilibrium must be that of instability : * and by the same

* It appears from the observations in page 49, that whenever a solid floats in a posi-
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mode of argument it is shewn, that if the original position of
equilibrium be that of instability, when the solid by revolving
on its axis has become situ’ated in a second position of equi-
librium, it will float permanently, that is with stability, in that
second position. And in general, when a floating solid re-
volves round a given horizontal axis, and passes through
several positions of.equilibrium, those of stability and in-
stability are alternate, no position of either species following
immediately a position of the same species. In order, there-
fore, to find what position a solid will assume after it has
overset from any situation of unstable equilibrium, it is only
necessary to ascertain the angle of inclination from the given
situation through which the solid must revolve on the axis of
motion, so that the distance GZ (fig. 2.) between the two
vertical lines which pass through the centre of gravity of the
solid and the centre of gravity of the part immersed may be-
come evanescent. It isnecessaryin the next place, to determine
whether any position of equilibrium originally given is that of
stability or instability. This point will be ascertained by
having recourse to the general value which has been investi-
gated, for expressing the distance between the two vertical

lines GO, ST (fig. 2.); or GZ="A%—ds. In the line ER
take any point ¢, and through ¢ draw ¢tz parallel to GO.
Aslong as —E’VA: ET is greater than ds = ER, the point Z,
and the line of support QZ, will be between the axis and those
parts of the solid which are immersed by the inclination,

tion of permanent equilibrium, and is deflected from that position through a small
angle, the force of the fluid’s pressure causes the solid to revolve round its axis in a
direction contrary to the inclination ; and if the equilibrium is unstable, the same force
acts to increase the said inclination ; this latter case corresponds to that of the equi-
librium in which the solid is situated after it has revolved through the angle A.
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the consequence of which is an equilibrium of stability; and
bA

whenever ——=ET is less than ds = ER, the point ¢, and
the line of support ¢z, will be on the contrary side of the axis,
causing an equilibrium of instability to take place.* The equa-
tion, therefore, GZ = l"—,A— — ds, applied to any particular
case, will always decide whether the equilibrium in which a
solid is placed on the surface of a fluid is stable and permanent,
or whether it is only momentary and unstable, provided the va-
lue of s, or the sine of the angle of inclination from the given
position of equilibrium, be assumed evanescent; since the solid
either continues to float permanently, or will overset, accord-
ing to circumstances which take place while it is inclined
from its position of equilibrium through the smallest angle.
The applicatfon of the condition just mentioned will cause the
general expression to assume a form suited to this particular
case, which is in the next place to be attended to.

Referring to (fig. 2.), ADHB represents a vertical section
of a floating body, passing in a direction perpendicular to
the axis of motion; suppose another section to be drawn
parallel to the former, and extremely near to it; these two
planes will comprehend between them a small portion of the
solid ; and since according to the conditions of the case, the
angle of inclination KGS, or NXB, is evanescent, the sine of
this angle (which has been denoted by the letter s) will also
become evanescent; and since the space or volume immersed
in consequence of the inclination, that is NXP, is equal to the
volume elevated above the surface IXW, and the angles NXP,
IXW, are vertical ; the point of intersection of the lines IN
and AB, that is, the point X will bisect the line AB, and the

* Page 49, and page 5o0.
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points P, B, and N, will coincide; on which account the

B ) et Yy
. B A .
evanescent area NXP will be = % - XS A8 Xs . and if %

8 2
is put to represent a line drawn through the middle of the
solid, on a level with the fluid’s surface, and parallel to the
longer axis, the evanescent portion of the solid intercepted

——

AB xs
8

between the two adjacent planes, will be x Z: the per-

pendicular distance of the centre of gravity of this evanescent
solid from the point X, is + AB. But it is required in the
present instance to assign the distance from the horizontal
line passing through the point X, of the centre of gravity of
the entire volume immersed by the inclination, that is, the
"AB xs&
8
corresponding to the entire length z. This distance may

be obtained from the known rule of mechanics, which is,
by multiplying each evanescent solid, considered as concen-
tered in its centre of gravity, into the distance of that cen-

common centre of gravity of all the evanescent solids

tre from the given line, and dividing the sum of the pro-
ducts by the sum of the solius; the result will be, the distance
of the common centre of gravity from the horizontal line
passing through the point X parallel to the axis; and since
the evanescent solid corresponding to the small lineal incre-

ment % is 22 X2 X*  and the distance of its centre of gravity
. XB _ AB .
from the point X = 2-—3—— or —, the product arising from mul-

tiplying the solid into the distance of its centre of gravity,
from the given horizontal line passing through X, will be

—-._3 .
AB X sx=z

; and the sum of all those products corresponding

MDCCXCVI, K
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fluent of A B3.>< S X%
24

to the whole length of the line z will be ;s and
therefore the distance of the common centre of gravity of
the volume immersed in consequence of the inclination

from the horizontal line passing through the point X, is

—3
fAD ki .
fluent o ‘; - XIX%. in like manner the distance of the com-

mon centre of gravity of the volume, elevated above the sur-
face by the inclination of the given plane, appears to be

=3 .
fluent of il; 212 %; and consequently the distance between the

two centres of gravity measured on the horizontal line, or &¢

(fig. g.) = Suentol AB xsxE i value being substituted for b
12 A

. . bA . .
in the equation GZ :T — ds, we obtain the following re-

tof AB. N
sult,i.e. GZ = 220t et % __ ds, which is a general ex-

pression for asCertaining whether a solid, when placed on the
surface of a fluid in a given position, will float permanently, or
overset, the sine of the angle of inclination or s being assum-

fluent of AB X § X%
"12V

ds, the line of support QZ (ﬁg 2.) will be situated between
the axis of motion, and the parts of the solid which are im-

ed evanescent; for, when ‘is greater than

mersed by the inclination, in which case the solid will float

fluent of AB3 X § X2
12V

line of support passing through the point z will be on the
contrary side of the axis, and according to the preceding de-
termination (page 64) the solid will in this case overset.

is less than ds, the

permanently ; and when

Since, when the fluent of —— B s + (fig. 2.) is greater than ds,



of floating Bodies, and the Stability of Ships. 67

the solid floats permanently; and when ds is greater than

—
Auent O‘:Z@B °2 , the equilibrium is that of instability ; it follows

fluent of AB : s

that whenever —

= ds, by resolving the equation

e 3
fluent of AB - i : ‘
-‘ﬂ—f;‘-f-ﬁ—i = d, one or more limits are obtained (depending

on the dimensions and specific gravity of the solid), separat-
ing the cases in which the solid floats with stability from
those in which the equilibrium is momentary and unstable.
The limits here obtained evidently correspond to that species
of equilibrium which has been denominated insensible, or the
equilibrium of indifference. ,
When the floating body is of uniform figure and dimen-
sions, respecting the axis of motion, the expression here given
for determining the stability or instability of floating will not
involve any fluxional quantities, for in this case all the vertical
sections which pass through the solid in a direction perpen-
dicular to the axis are equal, and consequently the portions of
those sections immersed under the fluid’s surface are also
equal ; if, therefore, the area of any-one of these sections im-
mersed under the fluid’s surface be denoted by the letter D,
the solid contents or volume immersed, corresponding to the
length of the line %, will be D % ; wherefore, in the preceding

—3
3 fluent of ;
expression GZ = —=2 AB xsx=z

— ds, we have by substi-

12V
tution V=D g, and since AB is a constant or invariable
. s fluent of AB® 5% AR sz
quantity by the supposition, —5= = —5—

AB® x s . . .
———5— : finally, therefore, in the case under consideration,

P ——
we obtain GZ = 28 > __ g¢.
1zD
Ko
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In the subsequent pages, cases occur in which each of the
preceding expressions are employed, not only to ascertain the
laws of permanent and unstable equilibrium, but in develop-
ing other properties relating to the subject.

EFCD (fig.g.) represents a vertical section of an oblong solid
or parallelopiped, placed on the surface of a fluid IABK, with
one of the flat surfaces upward, or the line CE or FD vertical':
this solid is moveable round an horizontal axis, which passes
through the centre of gravity G, perpendicular to the plane
ECDF. Let it be required to determine the limits, depend-
ing on the dimensions and specific gravity of the solid, which
‘separate the cases in which the solid will float permanently,
from those in which it will overset; through the centre of
gravity G draw the line SGL parallel to CE or DF: let
the height of the solid CE =c; let the base CD=a; also
let the specific gravity of the solid be to that of the fluid on
which it floats in the proportion of z to 1, or as SN to SL;
so that when it is placed on the fluid with the line SL verti-
cal, it may sink to the depth SN'; let O be the centre of gra-
vity of the part immersed : suppose the solid to be placed on
the surface of the fluid with the line SL vertical ; then, since
SN is the depth to which the solid sinks in the fluid, and SN
is to SL as # to 1, it follows that SN = ¢ ; and consequently

GO=——"22; the area immersed ABCD = acn ; wherefore,

to ascertain the perpendicular distance between the two ver-
ticals which pass through the centres of gravity of the solid
and of the part immersed, when the solid is inclined through
a very small angle, of which#he sine is = s to radius 1, re-
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ABsxs
12D

—ds, we

C - NC

ferring to the general expression * GZ =

, and

obtain the following values AB=a, D = acn, d =

therefore GZ — —%5 . 5% ”2”'"0 : by making the distance

12 acn

GZ =o0, we obtain an equation expressing the relation of
the dimensions and specific gravity of the solid, when the
equilibrium becomes insensible, that is, when the centres of
gravity of the solid and of the part immersed remain in the
same vertical line, however the value of s or the sine of the
inclination from the upright position may be altered, pro-

. . . M y _—.—a3 $
vided it is always very small; making, therefore, —
_§XC—cn a’s

= —————,wehave 6¢*n"— 6*n=—=—a’and n'— n = — —,
2 6¢c

. . 1 1 2> . \/_}_ a
which gives n=— 4 4/ T = —v T —g
from whence the following inference is obtained, i.e. in all

z . . .
cases whenever -?‘z;— is less than —;—, that is, whenever the height

of the solid ¢ bears to the base a a greater proportion than that
of /2" to /73, two values may be assigned to the specific gra-
vity of the solid, each of which will cause it to float in the in-
sensible equilibrium : thus, suppose the height ¢ to be to the
base a in the proportion of equality : to ascertain the two limit-
ing specific gravities, by referring to the preceding solution,

and makingc =g, we obtainn==1—4/ — —— orn=1

\/-I————g;, that is # = 1 — .28868 = 21132,
4
orn =+ 4 .28868 = .78868.

* When the angle KGS in fig. 2. is evanescent, the line GZ vanishes: this being
the case represented by fig. 3, the point Z coincides with the point G.
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ats SXC—cCn

it is inferred,
12 acn

From the equation GZ =

that when the specific gravity of the solid ié of very small

— must in this

value in respect to that of the fluid, because

case be necessarily greater than == the solid will float
permanently with the line SL vertical, that is, with the flat
surface EF parallel to the horizon. Secondly, the specific
gravity .2118g causing the solid to float in the insensible equi-
librium, is the limit at which the solid ceases to float with
stability ; if therefore the specific gravity is increased beyond
.21183, and the solid is placed on the fluid with the flat sur-
face upward, the equilibrium thus formed will be that of in-
stability, from which the solid will be deflected into some
other position in which the equilibrium is permanent. While
the specific gravity is augmented from .211 to .788, the insta-
bility increases at first, but admits of a maximum, which is

3

found by putting the least increment of the quantity

12 acn

§ Xc¢c—Chn

e

= o, considering » as a variable quantity, and mak-
ing a =c; in which case n appears to be equal to —= ‘/ If the
value of the specific gravity is increased beyond 7?, the

instability becomes less, and at last vanishes when the spe-
cific gravity is at its second limit = 78868 : whatever va-
lue is given to the specific gravity between .78868 and 1, the
solid will float permanently with the'line SL vertical, or with
its flat surface horizontal.

These cases arise {from dssuming the height of the parallelo-
piped SL, in a greater proportion to its base CD than that of
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V7 to /7; and from the same solution it appears, that if
the height bears a less proportion to the base than that of
/7 to /7, no value can be given to the specific gravity,
which will cause the stability to vanish, because the quantity

N4 -i——-»é; becomes impossible; in which case the solid
placed with the surface EF horizontal, must in all cases con-
tinue to float permanentlyin that position, whatever may be
the specific gravity, always supposed to be less than that of
the fluid.

(Fig. 4.) Similar determinations may be obtained from the
same theorem respecting the equilibrium of the solid, when
placed on a flnid with a plane angle upward, that is, with
the diagonal line EGC vertical. Let EDCT represent a ver-
tical section of a square parallelopiped floating on the surface

of a fluid TABK : making the side DC = 4, the line GC =

-\-/ﬁ—‘—;, suppose that the specific gravity of the solid is to the

specific gravity of the fluid as z to 1, and that the solid sinks in
the fluid to the depth HC; let G be the centre of gravity of
the solid, and O the centre of gravity of the part immersed ;

then the area ABC is to the area DEFC as n to 1; wherefore.
the space ABC =HB =a"n, and HB=HC=14 x v/ ;
AB=cavu; 0C=2Y" and GO = & 22¥n _

. 3 V2 3
ax3—*v 8xn

V2 X3
Referring to the quantity expressing the perpendicular dis-
tance between the two vertical lines passing through the
centre of gravity of the solid, and the centre of gravity of
the part immersed, when the angles of inclination from the
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AB ¢ X s
12D
—ds, and applying this equation to the case under considera-

position of equilibrium, are very small, that is, GZ =

tion, we obtain the following values; AB’= 84" x w7y D=

. : . -~ ABS .
an; d=223= : making therefore BDS = ds, in
12

order to obtain the limit, separating the cases of stability and
instability of floating; or, which is the same thing, making

3,5 x— v 8n . . . Vo
Son’ — X3 ¥ the following equation arises, Z—2 =
12a*n V2 x 3 3

3— 81 9 __
or n — 2 = .28129 = the specific gravity, which
V2 X 3 N 32 3 p g Y’

will cause the solid to float in the insensible equilibrium, and
is therefore the limit separating the specific gravities which
cause the solid to float with stability from those which produce
the equilibrium of instability Itis collected from the general

843 — V8n
ABS s-—-dS,Ol’GZ-" an s___ax3_ Sn;
12D 12a*n VZx3

that when the specific gravity () is evanescent or very small,
the solid will overset when placed on the ﬂuid with an angle

equation GZ =

upward, because in this case the quantlty must necessa-

X 3 — V8
Z %3
of the solid is to that of the fluid in the proportion of g to ge,
the solid floats in the insensible equilibrium ; if therefore the
specific gravity of the solid should be to that of the fluid in a
less proportion than that of g to ge, the solid will overset ;
but if the specific gravity of the solid exceeds that limit when
placed on the fluid with the angle upward, or diagonal line
EC vertical, it will float permanently in that position.

, ords. When the spec1ﬁc gravity

rily be less than =
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Respecting this determination it seems remarkable, that
there should be only ohe value of specific gravity, as a limit
between the stability and instability of floating ; whereas
there were two specific gravities, each of which was a limit in
the case when the solid was placed on the fluid with a flat
surface upward. This-difficulty admits of very satisfactory
-explanation ; when the flat surface is placed upward, the con-
ditions on which the solution is founded are not at all altered,
to whatever depth the solid may sink: but in the present
tase, when the solid is placed on the fluid with a plane angle
upward, the conditions on which the solution has been inves-
tigated imply, that as the specific gravity is increased, the
section of the solid formed by the fluid’s surface shall conti-
nually increase also ; and on that ground the result justly gives
one limit only between the stability and insfability of floating ;
but since in reality the section of the solid by the fluid’s sur-
face increases only until the specific gravity becomes one half
of that of the fluid, and afterwards decreases, it is evident,
that if there should be another limit corresponding to the case
when the specific gravity is greater than one-half, it must be
discovered by a separate investigation. Let, therefore, the
square parallelopiped EDCF  (fig. 5.) of which the specific
gravity is greater than L, that of the fluid being 1, be placed
on the fluid with the diagonal line EC vertical: IABK repre-
sents the surface of the fluid, and HC the depth to which the
solid sinks; G is the centre of gravity of the solid, and O
the centre of gravity of the part immersed. If one of the
sides DE is made = a, and the specific gravity put = #, then
the area ABDCFA =a" n; and the area EAB=4"—d'n=
EH ; wherefore EH=14a x v 1 —7n=AH; AB = 24 x

MDCCXCVI. L
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V' 1—n; and GH =a x V%-—‘—-\/T:;: let P represent
the centre of gravity of the area AEB; then by the properties
of the centre of gravity the following equation arises :

GH x area EDCF ==area ABDCFA x OH — area AEB x HP,
that is

s e 3

) ¢
a’xv=—\/1——n=a’nxOH——a’x 1—n*. and conse-
z 3

oo —— — 3
ax3—=V18xV1i—ntaxV zx1—n®
Vi8 xn

quantity taking away the line HG = a x

quently HO = ; from which

1 ~/
= - 1 —n=
vz
—V18nrx V1 — . . .
3 :/."_8_X_ ="  there will remain the line GO =
1o Xn

— —3 — —3
@X 3= —=V18 X 1—=n*f ¥ 2 X 1—n?
VI8 x n

3

AB s
12D

- e 3 [U— 1
obtain in the present case AB = 82° x 1 — nz, D=a"n, GO

Referring to the general expression, namely —ds,we

]

= — —
ax3—3n—VI18x1—n* 4V 2 X 1—n*

AB
=d= = ; wherefore — —
V18 xn i 12D
d— 843 le—n%__ a X 3—3n —Vﬁf_l-n%-}—*/—z—x l—nl%; which
124%n V18 X n

quantity being put equal to o, in order to obtain the limit,

XV z

and the whole being multiplied by , will give 2 /g x

1—n X a

s

Vi—n=g—gvexVvVi—n+ Vexv1i—n or
V1 —=_3_. —_—n= — 23 i-
1—1 R wherefore 1 — #n S OF =3 the li
mit required.
By the preceding determinations of the four limiting values of
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the specific gravity,i.e. £ —+/ I — L &1 VI

% az’ 34’

or .z1, 281, . 18,& 789, WEC ﬁnd
that if the specific gravity is less than .211, the square paral-
lelopiped, when placed on the surface of the fluid with a flat
surface upward and horizontal, floats permanently in that po-~
sition, but oversets if the specific gravity is greater than .e11,
and less than .#8g. We observe also, that when the solid is
placed on the fluid with an angle upward, if the specific gra-
vity is less than .281 it oversets ; if greater'than .281 and less
than .718, the solid floats permanently with the angle up-
ward ; but if the specific gravity exceeds .718, the solid over-
sets when placed on the fluid with an angle upward.

It is therefore evident at what depth of floating, depending
on the specific gravity, the solid when placed on the fluid in
the positions which have been described, begins or ceases to
float with stability. But a material inquiry remains to be
consideted, which is, to ascertain in what position a square
parallelopiped will dispose itself, in respect to the fluid’s sur-
face, when the specific gravity is of any intermediate values
between the limits which have been determined. To resolve
this question the preceding results are evidently inadequate,
since from these we only know in what cases, depending on
the values of the specific gravity, the solid when placed on the
fluid either with a flat surface or an angle upward will float
permanently ; and in what cases it will overset. Suppose the
latter event to take place, and that the solid, having been placed
on the fluid in a position of unstable equilibrium, oversets or
changes its position by revolving on its axis. To ascertain
what position the solid so circumstanced will assume, in which

L2
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it will continue permanently to float, we must have recourse
to the theorem for expressing the perpendicular distance be-
tween the two verticals, which pass through the centres of
gravity of the solid and of the part immersed. For by put-
ting this value = o, the resolution of an equation thence aris-
ing, will give the sine of the inclination from the position of
equilibrium at which these two vertical lines coincide; that is,
when the centres of gravity of the solid and of the part im-
mersed are again in the same vertical line: in this case the
solid will be situated in a position of equilibrium, which, ac-
cording to the observations in page 63, must be an equilibrium
of stability.

Let EFDC (fig. 6.) represent the vertical section passing
through the centre of gravity G of an oblong solid or paralle-
lopiped, the lo’nger axis of which passes through the centre of
gravity G in a direction perpendicular to the plane EFCD;
LGS is drawn through G parallel to CE or DI ; this solid is
placed on the surface of a fluid IABK, with the line SGL ver-
tical ; and the specific gravity of the solid is such as causes it
to sink to the depth under the fluid’s surface SN.

The volume immersed under the fluid’s surface is the space
ACDB, of which the centre of gravity is O; and since the
points G and O are situated in the same vertical line, the solid
will be in a position of equilibrium, which, according to the
present supposition, is assumed to be the equilibrium of insta-
bility ; the solid will therefore spontaneously overset whenever
external support is removed, and will change its position by re~
volving round an horizontal axis which passes through the
centre of gravity in a direction perpendicular to the plane
CDFE,
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It is required to ascertain through what angle WGS, the
solid will be inclined round its axis, when the centres of gra-
vity of the solid and of the part immersed are again in the
same vertical line. As in the former cases, this problem will
be solved, by I:eferring to the general expression for the dis-
tance between the two vertical lines which pass through the
centres of gravity of the solid and of the part immersed.

Suppose then the solid to be inclined from its former position
of equilibrium in an angle WGS, so as to become transferred
from the position ECDF into the position YWHYV ; the part
immersed will now be ZHVR ; theline AB will also be trans-
ferred to PQ, and the space QXR, which was before above the
fluid’s surface, will now be immersed under it ; and the space
PX7Z, which was before under the surface, will now be above
it. Bisect the lines PZ, OR, in m and z, and join mX, nX;
and take Xa = 2 of Xm and Xd =2 of Xz ; so shall 2 and d
be the centres of gravity of the triangles PXZ, QXR, respec-
tively ; draw the lines ab, cd, perpendicular to the horizontal
line AB. Referring to the quantity expressing the distance

between the vertical lines which pass through the centres of

gravity of the solid and of the part immersed, namely, -b\—?— —_

ds, there will be applicable to the present case, the space
QXR = A; the space ZHVR or ACDB=V; be=1b; OG
= d; the sine of the angle of inclination or WGO=7s: let ¢
be the tangent of the same angle to radius=1; then, since the
triangles ZXP, QXR, are similar, and the areas are equal by
the supposition, the sides of the two triangles will be respec-
tively equal ; that is, QX will be equal to XP; ZP equal to
OR; and ZX to XR. Let the height of the solid SL =¢,
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and the specific gravity = » when that of the fluid is equal to
1, also make VW or XQ = 2 ; then QR = at, and Qn = f-'z-t :

Xn_.—-_\/a +z, oan_.——x\/4,+t
To find the sine of the angle nXR, make the following
proportion. As Rz or Qn (i;i) : Xn (—g— x v 4+ t’) : : sine

. ' . s RX %t
#XR: sine XRz: wherefore sine #XR = S "RX X! . o be-

Vite

. 1 . 4
cause sine nRX = sine nXR = :
Vi Vit exVige '

2 1 . 2
cos. nXR = : and since Xd = — x Xn =

VitbExVite 3

"/ 2, V4 2 i*
ex V4t it follows that Xeom= 2X XA X2+ 2

3 Vg 1 x V1§ 82 3

Vz :_ t; ; and since the triangles XPZ, XOR, as also the tri-
1 .

angles ZXm, RX#n, are similar and ‘equal, the line X4 = Xc;

and consequent = oX¢= 22X 2E % which quantity =
nd consequently bc ‘= T quantity
b in the general value —[—"-,‘/3- — ds. And since the specific gra-

vity of the solid is = #, the height SL = ¢, and the base CD
== 24, the immersed part or ACDB = 2acn, which in the ge-
neral expression is denoted by V; and the volume QXR =

—‘%f- is denoted by the letter A in such general value.

bA zaxz+t’
—— — ds,
3x~/r+t’.

for b ; — ! for A and eacn for V; the distance between the

Substxtutmg, therefore, in the expression

vertical lmes passing through the centres of gravity of the
solid and the centre of gravity of the part immersed, appears
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— 2 2 gy T .
tobe 22X2+ 8 &t g5, or ZEXZEL __ ds; or since
3 X V1418 2 x 2am 6cn X V142
— ' . . 2 ¢ + t* —cn XS
d=°"%" the said distance = 2 X2*tf __ ¢—=¢ ; or
2 cnx'\/l-}-t" 2 .

a*s X 2 — s
6cn X 1 —s*

by substituting for #* its value —;, the distance =

C—cn XS

;.in which expression a denotes half the breadth

PQ ; but as it may be more convenient to represent the whole
breadth AB or PQ by the letter @, the expression will in this

a*s X 2 — §* c—cn'xX s, . . ‘
case be = i ——} which quantity be-

2a% — 12¢*n + 1262 2

2
or § —
126*0* — 12¢*n 4 a* r

ing put = o, we obtain s*=

%N - 12C* N* — 24 . . T .
== ——. From this equation the angle of inclination

from the original position of equilibrium may be found, from
having given the specific gravity ; or conversely, the specific
gravity may be found from having given the angle of inclina-
tion through which the solid must revolve, so as to be situated
in a second position of equilibrium. As the instances given toil-
lustrate the propositions already investigated have been adapted

to the case of a square parallelopiped, the present result may
be exemplified on the same supposition. Assuming then the
height of the solid to be equal to the base, a will become
=¢ in the preceding expression, and consequently s =

121 — 1210%* — 2
12H — 120 — 1"

We have seen in a foregomg proposmon, that if the specific
gravity of this square solid should be greater than .211 so as
not to exceed .78, the solid placed on the fluid with a flat
surface upward, would be situated in an equilibrium of instabi-
lity, and consequently must change its position by revolving on
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its axis till it settles in some other position wherein the equi-
librium is permanent.

From the presént proposition we shall be enabled to ascer-~
tain what that position is. Thus, let the specific gravity n =
.24, which is between the limits .211 and .#89; and will con-
sequently place the solid with a flat surface upward and hori-
zontal, in an equilibrium of instability. By referring to the

127 — 127> — 2

equation s* = ———, and substituting .24 for n, we find

1272 — 121
2 xzn-—lznz.—z___ .1888_ . . o ’
that s* = =7 = g5 and s==the sine of 23’ 2g".

From this calculation it ‘appears, that the solid after having
overset from its position of unstable equilibrium, with the flat
surface upward and horizontal, and having revolved through
an angle of 2g° 29/, will settle ina position of permanent equi-
librium at that angular distance from its original situation ;
for by the solution, when the solid has revolved through that
angle, the centres of gfavity of the solid and of the part im-
mersed are again situated in the same vertical line, and con-
sequently the solid is then situated in a position of equili-
brium, which must be the equilibrium of stability, because the
original position from which the solid inclined, was that of
instability ; and it has been observed previously, that when a
solid changes its position by revolving on an axis on the sur-
face of a fluid, any position of equilibrium is always succeeded
by a position of equilibrium which is of a contrary descrip-
tion.

If the angle of inclination from the upright position with a
flat surface horizontal should be given, the specific gravity of
the solid may be inferred from the preceding equation, which
will cause the solid to float in a position of equilibrium at
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that given angle of inclination ; for by solving the equation

S P12 obtain 7 = L == /—1;23-— Thus, if
lzn—izn 2

it should be requlred to ascertain the specific gravity which
will cause the solid to float in equilibrio at the angular dis-

tance of eg° 29’ from the upright, we have \/:;’T— 2 =

— 128*

0.26000, and the specific gravity required, thatis, n =5+
.26 = .76, or n = .5 — .26 =.24. Thus we find from this
calculation that there are two specific gravities which will
cause the solid to float in a position of equilibrium at the same
angular distance 23’ 29’ from the original situation with a flat
surface horizontal ; a conclusion which it is easy to verify by

127 —— 12172 — 2 2,
substituting .76 for z in the equation ——————==5s": there-
888 .
sult is that s* = i‘%@f{’ the same as in the former instance, when

n was assumed = .24,

In the application of analytical investigation to the solution
of problems, it is always necessary to keep distinctly in view the
conditions on which the investigation has been founded ; for
however correct the solution may otherwise have been, any in-
advertence in this respect will unavoidably lead to error and
inconsistency. The investigation by which the floating position
of the solid is determined after it has changed its position from
an equilibrium of instability, when one of the flat surfaces was
parallel to the horizon, has proceeded on a supposition that the
surface of the fluid intersects the parallel surfaces YH, WV,
(fig. 6.) in the points R and Z; but if the two surfaces inter-
sected by the fluid should be the inclined sides HV, VW, or
in other words, if the point of intersection Z should be si-
tuated between H and V, neither the geometrical construction

MDCCXCVI. M
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nor the analytical investigation depending on it, can be applied,
so as to ascertain the required position of equilibrium, a so-
lution altogether different being required to determine the po-
sition in which a solid under these conditions will float per-
manently. It is, however, certain, that as long as the point of
intersection Z is not lower than the point of the base H, the
preceding solution will be applicable : it will be therefore ma-
terial to find both the angle of inclination from the original
position of unstable equilibrium, and the specific gravity of
the solid when it floats permanently, with this condition an-
nexed, i. e. that the surface of the fluid shall pass through one
of the extremities of the base: the result of this solution will
form a limiting value both of the angle of inclination and of
the specific gravity, beyond which the préCeding investigation
not being applicable, another solution is required.

Let AECD (Tab. IV. fig. #.) represent a vertical section of
the square parallelopiped which rests permanently on the sur-
face of the fluid IKDH, passing through the extremity of the
base D. It is required to find the angle of inclination KDC
from a position of equilibrium with a flat surface horizontal,
and the specific gravity of the solid, when it floats in a state
of equilibrium. Let the tangent of the required angle KDC
be to radius as ¢ to 1, and put CD=a; let the specific
gravity of the solid be to that of the fluid as z to 1. Then

KC = at, and the area KCD = azzt : and because as the area

KCD is to the area AECD, so is # to 1, it follows that n ==

127 = 120% =2

¢ . .. ..
. % o 1zn—1zn —2
-3 and since by the preceding investigation* §"=- P

where s represents the sine of the angle of inclination from the
“* Page 79,
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upright position, which is the angle KDC in the present

case; substituting for = its value —zt—, the equation will now

z 6 — 31> — 2 . P 1 .
become s =g —r— OF because s'= +— B T
6f — 31 — 2 3 . s .
S Or O — glt— 1'=6t — gt' — 2 4-61'— gt ‘e af?,

or 4#*= 6t — 2; which equation being resolved, gives ¢ =

i—t —i—, that is, t_—:% or t = 1. By this solution it appears,

that there are two angles at which the solid may be inclined
from its upright position of unstable equilibrium with the flat
surface upward, so as to rest permanently on the surface of the
fluid,when that surface passes through one extremity of the base:
1st, when the angle of inclination is KDC = 26° gg', 51",4,
or about 26° g4/, of which the tangent is to radius as 1 to 2 ;
and secondly, (fig. 8.) when the angle of inclination KDC = 4,5°,
of which the tangent is equal to the radius. When the solid
floats permanently on the fluid at the angle of inclination
KDC = 26° g4/ from the upright position, the part immersed,
or KCD, is to the whole volume ABCD as 1 to 4 and there-
fore the specific gravity of the solid is to that of the fluid as 1
to 4, or resuming the former notation applied to the present
case, the specific gravity of the solid or #n = -;:—, when that of

the fluid is=1. That the position of equilibrium here de-
termined is that of stability, appears from attending to the
limiting value of the specific gravity, determined in page 69,
where it is shewn that when the square parallelopiped is
placed on the surface of a fluid with one of the flat surfaces
horizontal, and the specific gravity of the solid is greater than
.211, so as not to exceed .789, the equilibrium will be that of
instability, and consequently the solid will overset. It has
M2
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been just shewn, that after the body has revolved through an
angle of 26° g4/ it will be again in a position of equilibrium,
which must therefore be the equilibrium of stability. Similar
consequences follow from’supposing the specific gravity = L
in this case if the solid is placed on the fluid with a flat sur-
face upward, the equilibrium will be that of instability; and
it appears from the preceding solution, that after revolving
through an angle of 45°, (fig. 8.) it will again be in a position
of equilibrium, which therefore will be stable and permanent.
By a similar investigation, the angle of inclination ABK (fig.9.)
from the original position of equilibrium may be found when
the solid floats permanently, and the fluid’s surface intersects
one of the extremities of the upper side of the square AB : for
the notation remaining, by putting the tangent of the angle

. . . 2 t
of inclination ABK =1, the area ABK = ~—, area KCDB=
* gt . . —t .
2 — ., wherefore the specific gravity or n = Z=—; which
L% —
142 T
r  _ bl—3r—2
1z — 12n* — 1’ ‘ 1427 6t —3t*—1?
exactly the same as in the former case; and by solving this

quantity being substituted for z in the equation

«
121 — 121% — 2

there will arise the equation

equation it appears that = —2— == i-, and consequently the spe-

2t 3 1
= = 0O B == .
4. 2

cific gravity of the solid, or n =

The only inquiry remaining to complete the investigation
respecting the floating positions of the square parallelopiped,
is to ascertain in what position the solid will float permanently

* Because s being the sine, and ¢ being the tangent of the angle ABK, it follows that
t* :
142

5t =




of floating Bodies, and the Stability of Ships. 85
with a plane angle obliqué]y upward, when the speciﬁc gravity

is between the hmlts - and -, or between the limits 23 v 3 and 4
It has been seen in a former investigation, that if the sohd is
placed on the fluid with an angle upward, and the specific gra-~
vity is 5 2, it will just begin to float with stablhty, and ceases to

float w1th stability when the spemﬁc grawty exceeds 2 When

— 8 orl
the specific gravity is S or
with the surface of the fluid coincident with an extremity of

one of the sides: if, therefore, the specific gravity is between the

2, it floats’ permanently

limits = and 2 or between 22 and 24, the solid will float per-
32 32 32 32

manently, with the diagonal line inclined to the vertical. This
angle may be determined by finding an equation which ex-
presses the relation between the given specific gravity and the
sine or tangent of the required angle to radius=1. Let a
square parallelopiped IVCF (fig. 10.) float with an angle
obliquely upward, so that the diagonal line shall make an
angle with the vertical ; suppose that angle to be OGT, the
line GT being perpendicular to the horizon; let the surface
of the fluid coincide with the line DE perpendicular to GT ;
take CB a mean proportional between EC and CD, and draw
BA parallel to GV, intersecting the line GC in H; so shall
CH be the depth to which the solid sinks in the fluid when
the diagonal line CI is vertical, and consequently the area
BXE is equal to the area XDA ; take CO=13% CH; O will
be the centre of gravity of the volume ABC ; bisect EB in K,
and AD in B; draw XR and XK ; and take XM = % of XR,
and HL=13 of XK ; M will be the centre of gravity of the
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triangle XAD, and L. will be the centre of gravity of the tri-
angle BXE; through the points M, L, draw the lines MP, QL,
perpendicular to the horizontal line DE ; make PQ == b, the
sine of BXE=ys; the tangent of BEX =1t to radius =1,
and let EC =a. | |

Then CD =ta; and CB=+Via’; CH =

_Z- x CH = ,/2‘“ . the area ABC= CH —

BXE =u; then to find the distance OT, the following pro-
portion is to be made ; as the area CDE or ABC is to the area

BXE : :s0is PQ* to OT;oras“—: u:: b: OT = 2% ; and

; put the area

0G = Z—bu— ; and since CO = \/ 2 it follows that CG =

ta 2 2
4 Vg
2 —I— 225 and therefore CV = L X% bu 4 4t“ —
tats s
V72 xb V————-tz G . ) ) ‘
X u3;: s £ "5 and the specific gravity being = n,
\/n _Cl‘l_ \/ta ‘3ta® s . 3t§2a3s

V72 X bu + V415 abs* 12bu + 2 V2t a% s
thus, if the angle at which the diagonal line IC is inclined to
- the vertical line TN or OGT = BXE should be 15°, the angle
XEC = go°; wherefore in the preceding expression, ¢ = tan-
gent go’ toradius 1; s = sine 15°; if CE or a is assumed = 1,
on making the proper trigonometrical computations, the area
BXE = u=.039395, and PQ =b=c.73089; from substi-
tuting these quantities for their values in the equation vz =

33 ads .34063 —

—, it appears that V7 =— —
? ppear +34552 + 32114

12bu 4+ 2V 285 a3 s
0.51094, and 7 == 0.261 the specific gravity which causes the
solid to float on the fluid in a position of equilibrium with a

* Page 59,
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diagonal line obliquely upward, being inclined to the vertical
at an angle of 15°; the equilibrium is that of stability, because
when the diagonal is vertical, the solid floats in a position of
unstable equilibrium, the specific gravity o.261 being less

than 39; or .281, the limiting value which separates the cases
of permanent and unstable equilibrium when the solid is placed
on the fluid with a diagonal line vertical.

It is curious to observe the conclusions which arise in the
extreme case when the angle of inclination from the vertical

is assumed = o; and consequently the angle XEC = 45°;

for in this case CB=CE =4; t=1; and BH ::;i__—;
- 2

therefore u or the area BXE * = BHZ XS = s:z ; and since

— PO — 4% i — s . —
b =PQ = s it follows that bu = vt and 12bu =

4a3 s

= v/ 24’ s; which quantities being substituted for their
2

313 a%s

12bu 4 2 285 a s

values, the equationv/7 = will become v/ 77 =

34°s 3 _. — 9 :
<= and therefore n = —7 agreeing-f

2V 2a3s 42V 2a3s | 4V 2
precisely with the specific gravity inferred by a different me-
thod from the same data.

The equation v/ 7 = ——35 (the line CE = 4 be-

2V 2t3 s + 12bu
ing assumed = 1) expresses the relation between the specific
gravity of the solid and the fraction representing the sine of the
angle of inclination from the upright position: if, therefore, that

P]

* Because the point of intersection X coincides with H when the angle BXE va-
nishes.

+ Page 72,
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angle is given, the specific gravity will be known. If it should
be required to find the sine of the angle of inclination from
having given the specific gravity, it is evident from the nature
of the equation, that such determination would require analy-
tical operations extremely complex and troublesome, which
may be avoided by having recourse to well known methods of
approximation. By assuming the quantities s and ¢ by estima-
tion, let the value of v/ n be calculated from the equation, which
being compared with the given value of v/, the difference will
be the error arising from the error in the assumed values of s and
t, which are therefore to be corrected, and the operation re-

peated until the value of v/n, deduced from calculation, coin-
cides with its true value; from which method of proceeding,
the angle of inclination from the original position of equili-
brium will be known. ’

This solution is evidently applicable to all cases in which

the specific gravity of the solid is between the limits-;; and ;95,
and by an investigation entirely similar, an equation is de-
duced expressing the relation of the specific gravity of the
solid and the sine or tangent of the angle of inclination from

the perpendicular, when the specific gravity of the solid is be-
tween %% and g-:—' ; in which case the solid will float permanently

with the diagonal line IC obliquely upward, being ihclined to
the vertical at some angle between the limits o and 18° 26’ 8",6.

These determinations comprehend all the positions in which
a square parallelopiped can be placed on the surface of a fluid
in a position of equilibrium, provided the solid is moveable only
round one axis, namely, that which passes through the centre
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of gravity perpendicular to the planes of the square sections ;
and this condition is insured by making the axis of sufficient
length ; for instance, if it is two or three times longer than
one of the sides, the solid will not spontaneously revolve on
any other axis. When the axis is diminished considerably, it
is certain the body will be spontaneously moveable round
some other axis; but it is unnecessary to enter into a detail of
multiplied instances, since the exposition of principles is the
material object in disquisitions of this kind.

The various positions which the square parallelopiped as-
" sumes when floating freely on a fluid’s surface depending on
its specific gravity, are brought under one point of view in the
following abstract, the line IK denoting the surface of the
fluid in the figures from fig. 11 to fig. 24.

If the specific gravity of the solid should be between the li-

R- I I 1 .
mits o and — — —— % (fig. 11, 12, and 1g.) that is, be-

tween o and c.211, the solid floats permanently on the fluid
with a flat surface upward, and parallel to the horizon.

If the specific gravity is between the limits .211 and .25
(fig. 13, 14, and 15.), the solid floats permanently with a flat
surface upward, but inclined to the horizon at sundry angles of
which the limits are o°, corresponding to the specific gravity
211 and 26° g4/, corresponding to the specific gravity .23.

If the specific gravity is between the limits .25 = —;-3; and

39;, (Tab.IV. and Tab. V. fig. 13, 16, 17.) the solid floats with

one angle only immersed under the fluid’s surface, the diagonal

line being inclined to the vertical at various angles depending on

the specific gravity, the limits of which angles are 18° 26/, cor-
MDCCXCVI. N
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responding to the specific gravity .25 = —-, and o, correspond-

ing to the specific graVIty =,
When the specific gravity is increased beyond , (fig. 17,

18.) the solid floats permanently with a diagonal lme vertical,

. - . —_— -2_3-
till the specific gravity becomes = =

1If the specific gravity is of any magnitude between g—z— and 2%
the solid floats with the diagonal line inclined to the vertical at
sundry angles depending on the specific gravity, (fig. 18, 19,
20.) the limits of which angles are o, corresponding to the spe- -
cific gravity -2-32-, and 18° 26’ corresponding to the specific gra-
vityfi three angles of the solid being immersed under the

fluid’s surface.
If the specific gravity is between the limits 2 —z and .789,

(fig. 20, 21, 22.) the solid floats with a flat surface upward,
and inclined to the horizon at sundry angles depending on the
specific gravity, the limits of which angles are 26° g4/ cor-

responding to the specific gravity -;i;ﬁ or .75, and o correspond-
ing to the specific gravity .789.

When the specific gravity is of any magnitude between
789 and 1, the solid floats permanently with a flat surface

| parallel to the horizon.

From these determinations we also collect that while the solid
in question, floating on the fluid’s surface, revolves round its
longer axis through g60°, it passes through either 16 or 8 po-
sitions of equilibrium. If the specific gravity should be be-
tween the limits .211 and .281, or between the limits .719 and
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.»89, the number of those positions will be sixteen ; of which
eight will be positions of permanent, and the remaining eight
positions of unstable equilibrium ; theseé different species of
equilibrium succeeding each other alternately while the solid
revolves round its axis. If the specific gravity should be of
any value not included within these limits, the solid in revoly-
ing through g60° will pass through 8 positions of equilibrium
only ; of which four are positions of permanent, and four of
unstable equilibrium.

In the investigations which have preceded, the solid is sup-
posed to be of uniform figure in respect to the axis of motion;
so as to make all the vertical sections drawn perpendicular to
the axis equal. But when the floating body is of such a form
that the sections drawn through it perpendicular to the axis at
various points thereof are unequal, a different process, depend-
ing however on the same principles, will be necessary ; both
for determining whether the solid will float permanently or
overset, and for ascertaining the several positions in which it
will float on the surface of a fluid.

Let EFCD (fig. 2g.) represent a cylinder* placed on
the surface of a fluid with the axis NP vertical. Sup-
pose the specific gravity to be such as causes the solid
to sink to the depth QP ; let it be required to determine
in what cases, depending on the dimensions and specific
gravity of the cylinder, it will float permanently in that
position, and in what cases it will overset. Put the radius
QA = r; thé specific gravity of the solid = #, that of

* In this and the following propositions, the plane surfaces which terminate the
solid are always understood to be perpendicular to the axis.

Ne
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the fluid being = 1; let the centre of gravity be G; the
- centre of gravity of the immersed part=0; GO =4d; let
AIBHSA represent a circular section of the cylinder coincident
with the fluid’s surface ; draw any diameter IS ; and a diame-
ter AB perpendicular to IS; let the axis passing-through the
centre of gravity round which the cylinder is moveable be pa-
rallel to IS ; through any point W of the diameter IS draw the
ordinate KW perpendicular to IS, and produce KW till it in-
tersects the circle in the point H; make QW ==z ; NP =1;
7= g.14159. It appears from page 66 that the solid will
float permanently in the given position of equilibrium
with the axis vertical, when the fluent of ——IS-E-;VX £ s
greater than d, the letter V signifying the volume im-
mersed under the fluid’s surface; it is also shewn in page

. — .
66, that if d is greater than -ﬂ‘iﬁ%%lgi-ﬁ, the equilibrium

) . ——3 .
will be unstable ; when the fluent of -5%—\7’5—%— = d, the equi-
librium will be the limit separating the cases in which the
solid floats with stability from those in which it is momentary
and unstable. To ascertain the limit in the present case it is

—_—3 .
necessary to find the fluent of —13%—‘}(—5— Since QS =r, and

QW =z, WH = Vir—2, KH = 2 x x/r“’—--z’, and
KH 3=8xr— z’\% x %3 the fluent of which quantity, while z

. . 8 . . .
increases from o tor is xf’éw ;¥ and for both semicircles, the

3 1 —f
* Fluent of 7> — 22" & = fluent of #* X r* — 2* & — fluent of r* — 2% 2% &.

Fluent of 1* x 7 — 7% X & =1* x the area QBHW. (fig. 23.)
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Auent of KH x 3= g7wrt; andv because PQ = Iz, and the area
of the circle AIBHSA is n#°, the volume of the part immersed

. ' . 1 in
Vis =#7"In; moreover GP = — and OP = —; wherefore

2

—3

— . t of KH 2 r¢

GO = '=" = d: and since the 822 X2 = 377
2. ‘ 12V 120 7% In

fluent of KH. X'z
12V

mits which separate the cases of permanent and unstable equi-

making = d, in order to obtain the limit or li-

2

. . . 74 l—In x 7
librium, we obtain the equation 37T — or —~ =11
127 r*in 2 2/
v
—_n N —n = — —;?;4 or if er is put = b == the diameter of

the base, n* — n = :S-lz—bf and n = —;-t\/-i- — g—,

If therefore the diameter of the base bears.to the axis a
greater proportion than that of"v/2 to 1, no value can be given
to the solid’s specific gravity, which will cause it to float'in a
state of insensible equilibrium ; or in other words, there is no
specific gravity separating the cases in which the cylinder will
float permanently, from those in which it will overset when the

% . 2 0% __ 4 S ré&
—Fluentof " — 2 223 =% » T2 2 % rz--—z—z-lv-g—xf

arc HS

r
This. quantity ought‘to be:= 0; when z'= o3 wherefore the entire fluent of

. 5 i s — . —
r"—z“\"“z:r’X'areaO@WH-]—Z-»;_x‘/’ 2% - 22 x\/r z* +__

.

?rcrHS —_ -7{-%- because the arc E;g- = l;— when ¥ = 0, or SH = SB’; when 2=

7, this fluent, that is, the fluent of r“---z“lE % while z. increases from o to r is =

2 art  art wrt _ gwrt
7 % area SBQ_=— T T T T T e
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axis is placed vertically ; the cylinder, under these circum-
stances, must always float permanently with its axis vertical.
When the diameter of the base bears to the length a less

proportion than that of v/2 to 1, two values of the specific
gravity may always be assigned, which will be the limits of
the cases in which the solid floats with stability or oversets;
len=—== -i--——-é—’%—. If the specific gravity should be
given, the proportion of the cylinder’s length to the diameter
of the base may be defined which limits the cases of stability

or instability of floating with the axis vertical ; for since n —

2

"= —gi—, it follows that 7”- = /81 — 8n*; consequently n be-

-ing given, if the diameter of the base should be to the length
of the axis in a greater proportion than that of v/8z — 8x* to
1, the solid will float permanently with the axis upward ; but
if the base should be to the length of the axis in a less pro-
;portion than that of v/8z — 8#* to 1, the solid will overset.
Thus if n*‘::%, V'8 —8n’ = \/ —-=1.2247; if therefore
the diameter of the base should be in a greater proportion to
the length of the axis than 1.224/7 to 1, it will float perma-
nently with the axis vertical, if in a less proportion, it will
overset from that position.

Suppose a parabolic conoid CEDK (fig. 24.) of given di-
mensions and specific gravity, should be placed on the surface
of a fluid with the vertex downward, and the axis vertical ; to
ascertain the limits (depending on the length of the axis, the
parameter of the parabola from which the conoid is formed, and
the specific gravity,) which separate the cases in which the solid

* Page 48.
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will float permanently with the axis vertical, or will overset,
the plane of the base being supposed perpendicular to the axis:
Let CED represent a plane section of this solid passing through
the axis, which section will therefore be a parabola. Suppose
the specific gravity to be such as causes the solid to sink to the
depth FE. AIBHA represents a circular section of the solid
which- coincides with the fluid’s surface ; draw any diameter
HI, and the diameter AB perpendicular to HI. Through any
point W, in the radius FH, draw the ordinate KM perpendi-
cular to FH ; and suppose the solid to be moveable round an
axis of motion parallel to the diameter HI ; put the parameter
of the parabola = p ; the length of the axis KE = 4, FW =z;
the specific gravity=n; #==g.14159; also let G be the centre
of gravity of the solid, and O the centre of gravity of the part
immersed. Then, since the volume immersed AEB is to the

volume CED as AB EF is to CD x EK, or asETF to E_Kz;
and since the volume immersed AEB is to the volume CED as

nto 1, it follows thatas EF : EK =a*: : nto 1, and therefore

EF = av/ 7, and FB = pa v/ n; referring to the expression
for determining the stability of floating bodies when the in-
clinations from a position of equilibrium are very small, or

fluent of KMsé X s
12V

. . —3 —t —
case, the entire fluent of KM z = g7 x F'B ; or, because I'B

= p* a” n, the fluent of KM &= grp®a’n: V or the volume

—ds, we have, applicable to the present

immersed = Z<2%; and since by the properties of the figure,
2

20 — 22V n

TSR o mn] »

GE = 2?” and OE = ,2“: ~., we have GO =
these substitutions being made in the genei‘al value,

fluent of KM3 Z XS
12V

jmp*a*nXxzxs
iz X wa*pn

— ds; this quantity becomes =
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za-—za’\/nxs

— ; , which being put=o, in order to obtain the
L ‘ , . -
limiting value required, we obtain £ — 2227 ;“ T2 =
—4a— 42V 7 — _ —
3p —4a = 4a n =0, and \/ n = ﬂ—ﬁ.g)_; consequently \/ ne1
3.

L a—=a.
4

From this determination it appears, that if the axis should
be to the parameter in a proportion less than that of g to 4, no
specific gravity can be given to the solid which will make it
float in the equilibrium, which is the limit between the stabi-
lity and instability of floating ; secondly, if the specific gravity
of the solid bears a greater proportion to that of the fluid
than the proportion which the square of the difference be-
tween the axis and & of the parameter bears to the square
of the axis; when the axis is placed vertical, the solid will
float with stability in that position; and thirdly, if the spe-
cific gravity of the solid bears a less proportion to the specific
gravity of the fluid than that which the square of the afore-
said difference bears to the square of the axis, the solid will
overset when placed on the fluid with the axis vertical, and
will settle permanently with the axis inclined to the verti-
cal line. These limits agree precisely with those which are
demonstrated by ARcHIMEDES, in the second book of his tract,
intituled De iis quee in bumido vebuntur,* prop. iii. and prop. iv.

. The demonstrations of ArcH1MEDES, which relate to the parabolic conoid, are
founded on a supposition that this solid is generated by the revolution of a rectangular
parabola on its axis ; that is, of a parabola which is the section of a rectangular cone ;
in which case the line, called by the author (or rather by his translator, the original of
this treatise being lost) < ea qua usque ad axem,” is half the principal parameter, be-
ing equal to the perpendicular distance between the plane which touches the cone, and
the plane parallel to it,.which is coincident with the parabola. This solid is termed by

ArcHIMEDES, ¢ conois rectangula,”” but the limitation appears to be unnecessary,
because the demonstrations of the author are equally applicable to a solid generated by
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If the specific gravity of the parabolic conoid should be less
than the limit which has just been investigated, and if the axis
should be to the parameter in a proportion greater than that of
g to 4, and less than that of 15 to 8, it will float perinanently
on the fluid with the axis inclined to the horizon, and with the
base wholly extant above the surface at some angle less than
90°; which angle may be determined by the following geome-
trical construction, subject to the limitation which will appear
from the construction itself, or rather from the computation
founded upon it.

Let ASBTD (Tab. VI. fig. 25.) represent a section of
the parabolic conoid which passes through the axis; which
section will be a parabola. Let the axis BE be divided into
three equal parts, one of which is EF. By the properties
of this figure, F will be the centre of gravity of the solid.
In the line FB take FH equal to half of the parameter,
and through H draw the indefinite line IGZ perpendicular
to BE, and in the line GZ take HK = FB ;. in the line
Hr take HI, which shall be to HK in the proportion of the
specific gravity of the solid to that of the fluid ; and bisect
IK in the point L ; with the centre L and radius LI describe
the semicircle KOI, intersecting the axis BE in the point O ;
through O draw OC parallel to KI, intersecting the parabola
in the point C, and let PCN be drawn touching the parabola
in the point C. Through C draw the indefinite line CR
parallel to BE, intersecting the line KI in the point G; in
the revolution of a parabola, which is the section of any cone, whatever may be the
angle at the vertex, half the parameter being substituted instead of the line, called by
ARCHIMEDES * ea qua usque ad axem ;”” and it is a property of conics easily demon-

strable, that any parabolya being given, a similar and equal parabola may be formed

from the section of any cone, whatever may be the angle at the vertex, the axis being
of suflicient length.

MDCCXCVI, O
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the line CR take GQ equal to half GC; and through Q draw
SQT parallel to PCN. When the conoid floats permanently
and at rest, the surface of the fluid will coincide with the line
SQT, and the axis will be inclined to the horizon at the
angle ONC : through the points F and G draw the indefinite
line FGM. '

The order of the demonstration will be as follows. First,
to shew that, according to the construction, the volume of
the immersed part SCBT is to the whole magnitude of the
solid in the proportion which the specific gravity of the solid
bears to that of the fluid : secondly, to shew that the centre
of gravity of the solid and the centre of gravity of the part
immersed are in the same vertical line ; and consequently the -
construction will place the solid in a position of equilibrium :
thirdly, to demonstrate that the equilibrium so constltuted is
that of stability.

Since by the properties of the circle, HI is to HK as
the square of HO is to the square of HK; and the square
of HO is to the square of HK as the square of CQ (= £ x HO)
is to the square of BE (== 2 BF'): therefore, since by the
construction the specific gravity of the solid is to that of
the fluid as HI to HK, it follows, that as the specific
gravity of the solid is to the specific gravity of the fluid,
so is the square of CQ to the square of BE: but by the
properties of the patrabolic conoid the magnitude of the seg-
ment SCBT is to the magnitude of the whole solid ACBTD
as the square of CQ to the square of BE; and consequently it
is proved that when the solid floats according to the position
described in the construction, the volume immersed SCPT will
be to the whole magnitude as the specific gravity of the solid
is to that of the fluid, which was in the first place to be de-
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monstrated. Secondly, because CQ is the abscissa of the seg-
ment SCT corresponding to the vertex C and ordinate SQ,
and by the construction CG =2 GQ, it follows from the
properties of the solid that G is the centre of gravity of the
segment or part immersed SCBT. By the properties of the
parabola, as ON is to CO so is CO to half the parameter, that
'is,as ON : CO :: CO = GH : FH; therefore since the triangles
GHF, CON, have one right angle each, and the sides round the
equal angles are proportional, the triangles will be similar;
consequently the angle OCN = the angle NFG: the sum of
the angles FNC, NFC, is therefore a right angle, and the
line FGM is perpendicular to the horizontal line PCN ; and
- since I by construction is the centre of gravity of the para-
bolic conoid, and G has been proved to be the centre of gra-
vity of the part immersed, and the line FGM is vertical, it
follows, that the centres of gravity of the entire solid and of
the part immersed are in the same vertical line, and conse-
quently the solid is in a position of equilibrium, according to
the construction. Thirdly, this equilibrium is that of stabi-
lity; for let the solid be conceived to be turned round an axis
passing through the centre of gravity, through a small angle,
in such a direction asto depress the parts towards D, and to
elevate those near to A ; in that case the lowest point of the
curve will be situated between C and B; suppose it to be at
W, draw WX = CQ, parallel to BE, and take Wg == % of

3
WX. Then since* CQ is to BE as the specific gravity of the
solid to that of the fluid, it is evident that however the axis
BE is inclined to the horizon, CQ and consequently CQ must

# Page ¢8.
Oe
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always continue of the same value, and therefore 3 of CQ =%
of WX or CG =Wpg; consequently g is the centre of gravity
of the part immersed after the inclination. And since the
abscissa or portion of the diameter intercepted between the
lowest point and surface of the fluid must always be of the
same magnitu‘de while the specific gravity remains the same ;
and by-the construction Wz is made equal to the abscissa CQ ;
it follows, that when the solid has been so inclined, that the
lowest point shall coincide with W, CG = wg, and conse-
quently wg is always less than wV; if therefore a line gz is
drawn through the centre of gravity g perpendicular to the
horizon, the point of intersection z with the horizontal line
RU will be between the points F and U; and the pressure
of the fluid acting in the direction of the line gz will cause an
angular motion in the solid,* which elevates the point D and
depresses the point A, or, in other words, will counteract the
inclination of the solid, by which it is deflected from its position
of equilibrium. By the same method of argument it is shewn,
that if the solid is inclined on the cbntrary direction, a force is
created by the position of the centre of gravity of the part
immersed, which restores the solid to its former situation, as
found by the construction ; which therefore places the solid
in a position of equilibrium which is permanent.

The several conditions by which this construction is limited
will be more easily deduced from analytical investigation, than
from having recourse to geometrical constructions.

To represent in general terms the angle CNO, at which
the axis of the solid is inclined to the horizon, let BE =a;
oHF or the parameter =75 ; also let the specific gravity of
the solid be ta that of the fluid as » to 1; consequently

# Page 63.
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FH_—;-._I;; FB-——-_. BH———%‘f—-%; ‘f-";;;i’?-; and since by the

construction KH : HI : 1:#n,and KH = BF= 333, it follows that
HI = -2‘;-—’f, and HO = 2”;/’7; consequently OB = HB — HO

__4a—3p  2aVn___ 4a—3p—4aVn o~y 4a — 3p — 42V 1
=T Ty T T s ; co=+v" 6

xv/p: and because ON == 41— 31; =4 V;, it appears that CO

will be to ON, thatis, the tangent of the angle of inclination
: . b aavn - —tp—aaV T
CNO, will be to radius as \/i‘i—-i'% gavm v pto fti‘__.}%_:‘zﬁ._l’,

3? v o1, When therefore the angle CNO

becomes equal to go°, that is, when the solid floats with
the axis in a vertical position, the tangent of inclination

or as

becomes infinite, or, which is the same

3P 4av'n
thincr 48— 3p —4av/n = o, and consequently v/n =" =2,

4.4

precisely coinciding w1th the limit deduced by a different
method * of investigation. : ,

~ But another inquiry is here suggested. It is evident that
this construction is applicable only while "the ‘solid floats
in such a manner that the whole of the base AD shall be
extant above the fluid’s surface. To know in what cases
this condition takes place, it will be necessary to investigate
what must be the value of the solid’s specific gravity, and the
proportion of the axis to the parameter when the solid floats
permanently, so that the surface of the fluid shall pass through
one of the extremities of the base A. The result will shew
the limit, or limits, if there are more than one, which sepa-

* Page 96.
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rate the cases in which the solid floats permanently with the
base entirely extant above the fluid’s surface, from those in
which a part of the base is immersed under it.

- The notation remaining as before, since OB or BN

=4a_32_4a«/§? and EB = g, (fig. 26.) by addition EN

— 102 = 361’_4‘“/” ; and because NW = CQ* = a v/n, it

follows that EW = EN — NW = 220=# =190 . ang since
AE = V/ap, the tangent of the angle CNO or AWE, is to

. p— —3p— 102V .
radius, as EA to EW, or as vap: = 3]; D2 that s,

making the radius = 1, the tangent of the angle AWE or CNO

Vap % 6 _ 3 xp
= ut the tangentt of CNO =4/ —— =
104 — 3p — 102 V0’ ;b g 4a—3p—4avV'n’
. *, . v_. '

which two quantities are therefore equal, or /RS —
. : 100 — 3p — 102 V1

-—-\/ _,orifl-—\/ﬁisput:m, Yap x 6
48 — 3{, 4av ioma — 3p

_EXp . 36ap

= iyt and by squaring both sides, ———--2—— T
= 3P 47 I__, which is re-

2 x4ma—-31> Of Toom*a > — 6omap 4 9p* 4ma 3p

duced to the equation, 1com*a*— 6om ap 4 gp* = 96‘ma —
6opa + 964> — 9p* — 72ap

. 2 —— AL L

woap; OF M’ — ——: X m == o Wherefore m

. 30pa + 482 /3%1) + 48?1\ op* + 72ap _ 30p + 48z -

- 1004* 1004 100q* - 1002
22V 1

# By the preceding investigation in appears, that HO =

GCand GQ_= § GG, it follows that CQor NW =a ¥ u.
+ Page 101,

, and since HO =
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—— \/57642 — 1080ap __ 15p + 24a & V'576a> — 1080pa |

== T ; consequ~nts
25004 502
ly, restoring the value of m = 1 — V', 1 — V'n
i '\/ 6L7‘~—- 8 - -
== 152 % 242 5027 Lo 2000 . and therefore v r =

264 — 15p + 6Vz2a x V8a — 15p
504 :

~Various inferences follow from this determination. In the
first place, although the object of the preceding investigation
was, to find a single value only of the specific gravity, which
would cause the solid to float permanently with the extremity
of the base coincident with the fluid’s surface, yet by the re-
“sult it appears, that there are two values of the specific gravity
which will-answer this condition under a certain limitation,
which is also discovered by the solution ; this is, that the axis
(@) shall be to the parameter (p) in a proportion greater than
that of 15 to 8; for if that proportion should be less, 8a will
be less than 15p; in which case the quantity v/8z — 15p
becomes impossible. From which circumstance it may be in-
ferred, that whenever the axis is to the parameter in a less
proportion than of 15 to 8, the solid will float permanently on
the fluid with the whole of the base extant above the fluid’s
surface, whatever may be the specific gravity of the solid.
This limit is precisely the same with that which is demon-
~strated by ArcHiMEDEs, in the second book of his tract,
intituled de iis que in bumido vebuntur, prop. vi. When the
axis bears a greater proportion to the parameter than that
of 15 : 8, the solid will float either with the base entirely out
of the fluid, or partly immersed under it, according to the
specific gravity. Having given the axis a in a greater pro-
portion to the parameter p than 15 to 8, by making the
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6a — 15 6 x Vv 20 x vV 8a — :
264 1>#>+50>t<Z 2a X v 8a 151;\ or un

specific gravity n =

_ze_ls_exv;;xv‘ga—:r;,,\‘ : -
= Tou , the specific gravity of the

fluid being = 1, the solid will float with the extremity of
the base in contact with the fluid’s surface. If the specific
\ -

26 — 15 6‘\/—2?;x\/—§a—1 :
a 5p + e - 15p , or less

gravity is greater than

62 — 15— 6 x ¥ 22 XV 8a — 135 e .
than 224152 =90 :Oa 22X 8“_ l’[] , the solid will float with

the base wholly above the surface. If the specific gravity
of the solid is to that of the fluid in any proportion be-

. 26a—1sp 1 6% Vaax¥ia_ish)
tween the limits 22—+ - —5_’;} to a°, and

50

264 — 15p —6 % Vaa x ¥ 8a—15p) . N .
Al ’;O e = 151)} to 4, the solid will float with

the base partly immersed beneath the fluid’s surface.

These limits are determined by geometrical construction
‘in the treatise before quoted (lib. 11. prop. x. et seq.) to
which construction the preceding investigation may serve as
a comment and analysis ; and some elucidation of this kind
may perhaps be deemed the more requisite, since no traces
are to be found in the work referred to of the method of
investigation or train of reasoning, by which a problem of so
much difficulty was solved, without assistance from analytical
operations, at least from any that would seem competent to
such an inquiry.* \

* Before any proposition can be demonstrated synthetically, it must have been
investigated or discovered by some previous train of reasoning: it has been supposed
that the ancient geometricians purposely concealed the analysis of their propositions ;
but as no satisfactory evidence is produced to support this conjecture, it is probable
that the supposed concealment arose from the want of a proper notation, by which
analytical investigations might be conveniently expressed,
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This construction of Archimedes* may be justly regarded as
one of the most curious remains of the ancient geometrical
synthesis, and is here inserted, in order that the agreement
between the solutions by analytical investigation and geome-
trical construction, may appear in the most satisfactory poirnt
of view.

Having given the parabola APBL, (fig. 27.) which is a
section of a conoid passing through the axis BD, and having
given the axis BD, which is to the parameter in a greater
proportion than 15 to 8, it is required to express, by geome-
trical construction, the two proportions which the specific gra-
vity of the conoid must bear to that of the fluid, so that the
solid may float permanently on the fluid when the surface
passes through an extremity of the base.

BD represents the axis of the conoid, DA is the greatest or-
dinate to the axis; join the points B and A, and bisect BA in
T; draw TH perpendicular to AD; and with the axis TH, and
ordinate AH, describe the parabola AT D ; in the axis BD set
off DK = % of DB, and make KR = ;. the parameter; also set
off KC to DB in the proportion of 4 to 15: consequently DB
bears a greater proportion to KR than 15 to 4; and since
KR is half the parameter, it follows that the axis is to
the parameter in a greater proportion than that of 15 to 8.
Through C draw CE parallel to DA intersecting BA in E,
and draw EZ perpendicular to AD. With the ordinate AZ
and axis ZE describe the parabola AEI, and through R draw
the line RGY, intersecting-the parabola AEI in the points G
and Y ; through the points G and Y draw the lines ON, PQ,
perpendicular to AD, intersecting the parabola ATD in the
points X and F.

* De iis quee in bumido vebuniur, Lib. ii. prop. x.
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Then the proposition affirms that the solid will float per-
manently on the fluid with the surface thereof in contact with
one extremity of the base, when the specific gravity of the
solid is to that of the fluid as the square of the line-OX is to.
the square of the axis BD, or as the square of the line PF is
to the square of the axis BD.

Instead of inserting the geometrical demonstration of thlS
construction, it will be more expedient, in the present instance,
to proceed by a contrary method of argument, i. e. by assum~
ing the construction as true, and inferring from it the propor-
tions of the specific gravities in question, and comparing the
proportions so inferred with those which have been already
found by analytical investigation. Proceeding, according to
this method, through the points X and O draw the lines SX,
OY, parallel to AD ; and since the axis DB =4, and DK =

' -—by construction, and KC —-——, it follows that DC = s,and

BC = la, moreover, by the properties of the par abola DA =
v/ap, and the triangles ABD, ECB, being similar, EC =

DAB’I;BC = al: 5x 8=7D; moreover,asDB: ZE or DC:: DA :
ZA, that is,as a: vV ap : ZA = ~—-l-5—'31—5, and consequently

AZZ___-KTZ-.Z___gxgxap-
ZE. T DC T 15 x 13

the parameter of the parabola AEl =

% ;Z ;f And because RC = EM = KC — KR = ¥ ;0151,’

and ZN = parameter of the parabola AEI x ME, it follows

that ZN = \/M.E_Xié:. /?1’_:__52. and ND =ZD — ZN

v — 4/ — ¥V 8ap — 15p*
= EC — 7N = Y x & ﬂPx6 /w ) \/S;rp 159
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and BY = ND* — 162 —15p —4 V2 x V82 =156 2nj YD = ON

by 50

— g X6a—15p—4v2ax VBa—15p__34a+ 15p+4¥2a x VBa— 15p,
- 50 - 50 :
and since HN = HD*— ND, we shall obtain HN = HD
v ap V8ap — VBap — 15p* __ Y ap + ¥ 16ap —30p*

2 T 10

Jo— o— ——————————

. HN - . 17a—30p 4 2V z2axV8a—15p,
and TS = parameter of ATD - 50 °

wherefore since TH = —‘2’-, and NX = TH — TS, it follows

172 — 30p + 2V 2a X V84 — 15p __

: X — £ —

that NX = - = ,

8a + 30p — 2V 2a x V' 8a — 152 or finally, OX = ON — NX =
50 :

340 4 15p + 4 X V2a x V82— 15p __ 8a + 30p — 2 X V'za X V8a—15p
50 50

__26”—15P+6‘\/-z-;x«/8a——15p

= T .

By a computation similar to the preceding it is found, that

. __26a—15p — 6% 2a X V84— 15p
the line PF = = -

It is therefore a consequence, from the geometrical con-
struction assumed as true, that the parabolic conoid will float
permanently with the extremity of the base in contact with
the fluid’s surface; if the specific gravity of the solid is to
that of the fluid, either in the proportion of :

— e\ 2
26a —15p + 6 X ¥V2a X V82— 15§\ 45 4 or in that of
5o

2

26a — 15p — 6 X% Vz_axVSa—lgp
5o
proportions which were deduced from analytical investigation :-}-

to a*; precisely agreeing with the

Wpre
* HD = HA = -—;af-. + Page 104.
Pe
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by which agreement both the construction and investigation
receive the most satisfactory confirmation.

It has been observed in the course of the preceding pages,
that the theorems* investigated to discover the floating posi-
tions of bodies, are no less applicable to ascertain the stability
of floating, or the resistance which the fluid’s pressure opposes
to any force applied to incline a floating body from its position
of equilibrium. This latter branch of statics is a subject deserv-
ing of every attention which science and practical experience
can bestow upon it, from the immediate relation it bears to the
motion and equilibrium of ships at sea. By this principle, the
wind’s impulses become effectual in propelling vessels, which,
in default of stability, are rather inclined from the perpendicu-
lar than moved forward by the force of the wind : and whena
ship has been nearly overset by the violence of the elements, it
is the power of stability which still sustains, and (if sufficient)
at length restores it to the upright position.

The stability of a floating body when inclined through any
angle from the perpendicular, has been obtained by investi=
gating a general value of the perpendicular distance GZ+ =

~— — ds; (fig. 2.) for the distance between the two vertical
lines, one of which passes through the centre of gravity of the
solid, and the other through the centre of gravity of the vo-
lume immersed. This principle is now to be applied to ascer-
tain the stability of ships: this will be effected by finding either
by construction or by calculation, the length of the line GZ:
and if the vessel’s weight should be W, the measure of stability
will be GZ x W, by which it is plainly seen, that if any force
M should be applied at a distance from the centre of gravicy
SG, (fig. 2.) and in a direction perpendicular to SG, to balance

* Page 61, + Page 6o,
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or counterpoise the force of stability, there will arise the equa-
tion M x SG = W x GZ.

In the particular case, when the angles at which a floating
solid is inclined from the position of equilibrium are very small,

the line GZ (fig. 2.) has been found * = fuentof AB x x5 _ e
12V

in which expression 2z is a small portion of a line drawn co-
incident with the fluid’s surface, and parallel to the axis of
motion ; AB is the breadth of the solid at the water’s surface,
corresponding to the line z paralle] to the axis; V is the total
displacement or volume immersed ; d is the distance GO; and
s the sine of the small angle of ?inclination from the position of
equilibrium. Respecting this expression it is observable, that

since Ment of B x:x % _ BT, (fig. 2.) and d = OG = EG,

R —] —
fAB = tof AB™ % ;
fluent o % ES, and fluent o % GS;

] —— —— —
12V

12V
which quantity is invariably the same whatever may be the
inclination of the floating body from the position of equili~
brium, provided that inclination .is very small; that is, fcheA
point S is immoveable in respect of the point G, while the
floating body revolves through any different small angles
round the axis, passing through the centre of gravity G in a
direction perpendicular to the plane ADHB. Since, therefore,

it follows that

—3

P .

uentof AB x s 1 ds x W
12V

the measure of stability GZ x W is

fluent of AB X %
12V

sure of stability = W x SG x s, agreeing with the value which
EvLEr has deduced by other methods for expressing the sta-
bility of vessels when the angles of inclination are evanescent.:
* I;age 66. |
+ Théorie complette de la Construction des Vaisseaux, chap, viii,

and — d = GS, (fig. 2.) it follows that the mea-
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If SG = o, that is, if the centre of gravity of the solid co-
incides with the point of equipoise S, otherwise called the
‘metacentre,* or centre of equilibrium, the stability will be
= o, or in other words, the solid will float in all posi-
tions alike, without effort to restore the upright position
when inclined, or to incline itself further; it being remem-
bered that the angles of inclination are very small. When
the centre of gravity is situated beneath the metacentre,
the solid must always float with stability, the measure of
which is W x SG x 3, in which case this force acts on the so-
lid to turn it in a direction contrary to that in which it is
inclined from the upright position; but when the centre of
gravity is placed above the metacentre, (fig. 2.) the quantity
W x SG x s having passed through o, becomes a force which
acts to turn the solid in the same direction in which it is in-
clined, and will therefore constitute thevequilibr’ium of insta-
bility. The determination of the point S becomes, for these
reasons, of consequence in estimating the stability of vessels
and other bodies when the angles of inclination are very small,
and is particﬂﬁiarly of use in ascertaining whether a solid, when
placed on a fluid in a given position of equilibrium, will float
permanently in that position, or will overset. Because it de-
pends on the stability or instability+} of floating when the angles
of inclination are of evanescent magnitude, whether the solid
will continue to float in a position of equilibrium or will re-
volve on an axis until it settles in some other. These theorems,
however, for the measure of stability being applicable only in
those cases when the angles of inclination from the position
of equilibrium are extremely small, when a ship or other body
is inclined 10° 15°, or 20°, the stability of floating is to be ob-

* Bouvgwer. Liv.i. sect. iii, chap. iv. - 4 Page66.
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tained by having recourse to the theorem demonstrated in
page 59, where it is shewn, that the stability of a vessel is
truly measured by its weight, and the distance between the
two vertical lines which pass through the centres of gravity of
the vessel and the centre of gravity of the immersed volume ;
or if s be put to represent the sine of the angle of inclination
“from the perpendicular, V = the total displacement or volume
immersed ; A = the volume immersed in consequence of the
inclination ; b = the horizontal line bc; d = the line GO,
(fig. 2.) and W = the weight of the vessel, the measure of the
vessel’s stability appears by this theorem to be W x GZ =
—I%X- —ds xW. In applying this expression to any case in
practice, it is supposed that the position of the centre of gra-
vity of the ship, and the position of the centre of gravity of
the immersed volume, when the ship floats in an upright posi-
tion, are both known, and consequently the distance of those

points, represented by the line GO = d, is a given or ascer-
tained quantity. The total displacement is supposed to have
been determined by previous measurements, which quantity is
denoted by the letter V; and consequently the weight of a
quantity of water, the volume of which is V, will be = W, or
the vessel’s weight. s, the sine of the angle of inclination
from the upright position, is necessarily given from the nature
of the case, and may be of any magnitude. The only quan-
tity which remains to be determined, for ascertaining the mea-
sure of the vessel’s stability, is bA. To facilitate this determi-
nation the following observations are premised. If a line be
conceived to pass through the centre of gravity parallel to.
the horizon from the head to the stern, when the ship floats
in an upright position, that line is termed the longer axis, to
distinguish it from another line, also horizontal, which passes
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through the centre of gravity in a direction perpendicular to
the former, and is called the shorter or transverse axe. A
vertical plane drawn through the longer axe when the vessel
floats upright divides it into two parts perfectly similar and
equal ; in which particular the figures of ships may be termed
regular ; although in other respects they are of forms not re-
strained to any uniform proportions. From the equality of
these two divisions of a vessel, it must necessarily happen that
when it floats in a quiescent position the similar parts on the
opposite sides will be equally elevated above the water’s sur-
face. A ship thus floating in a position of equilibrium may
be conceived to be divided into two parts, by the horizontal
plane which is coincident with the water’s surface; and the
section formed by this plane passing through the body of the
vessel is termed the principal section of the water, and is re-
presented in fig. . as coincident with the line AB: when the
ship is caused to heel, by being inclined round the longer axe
through any angle SGK or NXB, (fig.2.) the plane in the
ship represented by the line AB will be transferred to the po-
sition IN, and the section of the water will now pass through
the vessel in the direction of a plane coincident with AP, in-
clined to the former plane in the angle NXP, and may be
termed, merely for the sake of distinction, the secondary sec-
tion of the water. These two planes intersect each other in
the line denoted by the point X, or rather in the line which
is projected into the point X on the plane ABDH. Since the
~ vessel is supposed to be inclined round the longer axe, it follows,
that the line of intersection denoted by X will be parallel to
that axis. And since from the laws of hydrostatics the volume
PXN, which has been immersed in consequence of the incli-
nation, is equal to the volume IXW, which has been elevated
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above the water’s surface by the same cause are precisely equal,
.the position of the line represented by the point X (always pa-
rallel to the axis) will depend on the figure which is given to
the sides of the vessel PN, WI. It has been seen that when the
figure is a parallelopiped ﬂoafing with two plane angles thereof
immersed, the point X (fig. 6.) bisects the lines corresponding
to AB or IN in fig. 2: when the same solid floats with one
plane angle only immersed, (fig. 10.) the point X is removed
nearer to those parts of the solid which are more immersed
by the inclination. In a ship, the breadth of which continu-
ally alters from the head to the stern, and in no regular pro-
portion expressible by geometrical laws, it is evident that the
position of the point X, ’repreéenting the line in which the
water’s surface intersects the vessel in its two positions, must
be determined practically by methods of approximation, from
which, at the same time, the other réquisites for this solution
will be obtained. Since to find the value of the quantity bA

—,

in the expression W x b—“,“- — ds, it is necessary that the position

of the point X should previously be known : to determine this
particular it will be expedient to conceive the volume (fig. .
and 28.) NXP, which has been immersed in consequence of the
inclination, and that which has been ¢levated above the fluid’s
surface, or IXW, to be divided into segments, by vertical
planes passing perpendicular to the longer axis, and at a dis-
tance of a few feet from each other, for instance, 2 or gfeet ;
each of these segments will be of a wedge-like form, (fig. 28.)
contained between two planes, XxPp and XxNz, inclined to
each other at the given angle of inclination NXP; two vertical
parallel planes NXP nIp, which are nearly equal and the
portion NPznp, ef the ship’s side.

MDCCXCVI. ‘ Q
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The distance between the planes NXP, nzp, is the line
Xz = Nn = Pp; Xz produced, is the line in which the two
sections of the water intersect each other, and is therefore
coincident with the water’s surface, and is parallel to the
longer axis. The dimensions of the vessel being supposed
known, the lines AB, NI, will be known in fig. 2 : from these
data the lines NX, PX, (fig. 2. and 28.) are to be assumed by
estimation, and the angle NXP being given by the supposition,
the area NXP is known from the rules of trigonometry, and
the area PTNP may be inferred by the known methods of
approximation.*

In like manner the area zpin is to be determined, and a
mean of the two areas being multiplied into the thickness or

“® Srirvine. De Interpolatione Serierum, prop. xxxi. Cuarman. Traité de la
Construction des Vaisseauzx, ch. i.
Methods of approximating to the areas of curves, founded on the differential serieses,
are .given by several authors, particularly by Stirrinc and Simrson. Admiral
~CuaPMAN proposes a very ingenious method of approximation, depending on the
propertxes of the parabola; either is sufficiently exact for the purposes of practical
geometry, as appears by the instance inserted underneath: but of the two methods
that of Mr..STiRLING is the most correct. The two methods of approximation
- are severally applied and compared in the following example of finding the curvilinear
area, which is comprehended between an arc of 30° and the radius, sine, and cosine
of the said arc: to obtain this area by approximation, 5 equidistant ordinates are

givens i. . 1st. ordinate = radius = 8, 2d. = v63: 3d. = V6o, 4th. = v 53,

gth, = v/38.
The approximate area is,
According to the method According to the method
OfVSTIRLlNG, - 30.61153 ‘ of CHAPMAN, =~ 30.61131
Correct area - - 30.61156 30.61156
Error of approximation —  .00003 — 00025

The same method by which the areas of curves are found by approximation, may be’
_applied with equal exactness to determine the solid contents of space, and the position

of the centre of gravity.
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distance Xx will be the solid contents of this segment, to a
degree of exactness fully sufficient for the purposes of this
approximation. In the same manner the solid contents of
all the segments which are elevated above the surface are to
be obtained by making XI = AB — NX, XW = AB - PX,
and proceeding as in the former case. If the aggregate of the
segments NX P representing the part immersed, in consequence
of the vessel’s inclination, should not be equal to the aggregate
of the segments IAW, (fig. 2.) which are elevated above the
surface, the position of the point X, or rather of the line which
that point denotes, must be altered, and the same operations
repeated till the sums of the segments on each side of the said
line of inclination are precisely equal.

This having been effected, the magnitude of the volume

..—_

immersed, denoted by A in the expression W x 2 v — ds, will

be known ; and the magmtude of each of the 1nd1v1dua] seg-
ments NXPnzp and IXWizw, &c. will also be known ;. the
quantity bA will be found in the following manner. The
area PXNTP and its centre of gravity d are to be deter-
mined by methods of approximafion. Through d draw dc
perpendicular to the horizontal line PX:; Xc* will be the

* The solution of problems by geometrical construction has been little practised
since methods of -calculation have been 's6 much improved by the invention of
logarithms and other facilities: the solutions of difficult cases are, however, some-
times obtained with sufficient exactness by construction, which would be more trouble-
some by any other method: in the present instance, after the area PTNP and its
centre of gravity have been determined, the position of the centre of gravity d, of the
entire area XNT P, and the length of the line X¢, may be most easily ascertained by
the method of construction. If the line PN is bisected in the point C, the centre of
gravity of the triangle PXN will be situated at the distance of £ CX from the point C:
the centre of gravity of the triangle PXN being thus constructed with geometrical ex-
actness, it follows, that the centre of gravity of the entire area PXIN'T'P, which-is the

Qe
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‘distance of the centre of gravity d from the point X, estimated
in the direction of the horizontal line PX.

The same operations being applied to the area zptn, will give
the distance ex of the centre of gravity of the area zptn, from the
point z, estimated in the direction of the horizontal line px; the
mean of the two distances so found will be the distance of the
centre of gravity of the solid segment XPNzpn, from the line
Xz, estimated in the direction of the horizontal line XP or zp,
toadegree of exactness entirely sufficient for this approximation.

Similar distances of the centres of gravity of all the segments
(fig. 2. and 28.) PXNpzxn, corresponding to the line Xz pro-
duced, having been found, also of all the segments IXWizw,
if each of these segments is multiplied into the distance of its

‘centre of gravity from the line Xz, estimated in a horizontal
direction, the sum of the products so formed will be the va-

lue of the quantity A in the expression W x b—vé — ds, which

is the measure of the vessel’s stability, when inclined from its
upright position through an angle PXN of which the sine is to
radius as s to 1: and the quantities* W, V, and d, having been
previously determined, it is evident that from the methods
which have been described, the vessel’s stability when inclined
to the given angle will be obtained.

It would be improper, in a disquisition not written on the
practicé of naval architecture, to enter into further detail on
this subject. By what has preceded, it is evidently seen
that the stability of vessels may be determined for any angles
at which they are inclined from the position of equilibrium,
as well as for those which are very small. In both cases
common centre of gravity of the areas PXN and PNTP, is capable of being deter-

mined with very great precision.
* Page 111,
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it is necessary that the position of the centre of gravity of
the ship, and that of the part immersed, when the ship floats

upright, should be known; practical methods of mensu-

ration are required, in both cases, to ascertain these points.

When the angles of inclination are very small, to find the

ship’s stability, it is necessary to measure* the successive

ordinates or breadths of the ship on a level with the wa-

ter’s surface, and when the angles of heeling are not limited,

but are considered as being of any magnitude, the requisite

mensurations are indeed more troublesome, but are not liable

to more errors in execution than in the former case, when the
angles are limited to those which are evanescent.

The theorems for measuring the stability of ships, which
are founded on- assuming the angles of inclination from the
position of equilibrium evanescent, explain, in the most sa-
tisfactory manner, the principles on which the stability of
ships, when heeled to small angles of inclination, is founded ;
they also ascertain when ships or other bodies float on the
water permanently in a given position of equilibrium, or over-
set. But this can scarcely ever be an object of inquiry in respect
of ships, which are always constructed so as to float upright,
even before any ballast or lading has been added to them.

Mons. RoMME, in his valuable work on naval architecture,
intituled L’Art de la Marine, published at Paris in the year
1787, informs his readers (p. 106), that the French ship of
the line of 44 guns, called Le Scipion, was first fitted for sea
at Rochfort in the year 1779. As soon as the ship was floated
~in deep water, a suspicion arose that she wanted stability ; to
ascertain this point the guns were run out on one side, and
drawn in at the other; in consequence, the ship heeled 13

¢ Cuarman, chap.i. Crairsors Architecture Navale, part. ii. sect. i,
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inches (probably meaning at the greatest measure on the side
-of the vessel): by adding the weight of the men brought to
the same side, the depth of heeling increased to 24 inches.
This being a degree of instability, which was deemed too
great to be admitted in a ship of war, the ship was ordered
into port, that some remedy might be applied to the defect
which had been discovered. M. RouMME proceeds to relate,
that a difference of opinion prevailed amongst the engineers
respecting the cause of this imperfection in the ship, and the
remedies by which it might be corrected. The chief engineer,
‘who was sent from Paris to Rochfort to direct what measures
ought to be adopted on this occasion, and for rectifying the
like fault in two other ships of war, L’Hercule and Le Pluton,
was of ‘opinion, that the stability of the ship Le Scipion would
be sufficiently increased by altering the quality and disposition
of the ballast. The original ballast of the Scipio had been
84 tons of iron and 100 tons of stone; according to the new
arrangement of the chief engineer, the ballast was composed
of 198 tons of iron and 122 tons of stone. But as a ship of
war does not admit of any alteration in the total displacement
or immersed volume, to compensate for the additional weight
of ballast, amounting to 136 tons, the quantity of water with
which the ship had been supplied was diminished by the
weight of 136 tons. This alteration must necessarily have
the effect of lowering the centre of gravity of the vessel, and
thereby of increasing its stability : but, on trial, this increase
was by no means sufficient ; the diminution of heeling mea-
_ sured on the vessel’s side being only 4 inches. After this and
other ineffectual attempts, the defect of stability was at length
remedied by applying a bandage or sheathing of light wood
to the exterior sides of the vessel, from 1 foot to 4 inches in
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thickness, extending throughout the whole length of the water
line, and 1o feet beneath it. :
This account shews that the theory of stability, restrained
to cases in which the angles of inclination, or heeling, are
very small, cannot be relied on for ascertaining the requi-
site stability of ships in the practice of navigation. It must
be supposed that the weight and dimensions of every part
of this ship were exactly known to the engineers, yet we
observe that the instability was not certainly ascertained, but
suspected only to exist when the ship was first set afloat in
deep water ; and after this defect had been discovered by the
experiment which has been related, the cause was sought for
in vain, and the remedy at length was stumbled upon by ac-
cident, rather than adopted from any knowledge of the prin-
ciples by which the application of it might have been directed.
It seems allowable to suppose, that if rules for ascertaining
stability correspondent to any different angles of heeling,
similar to those which are demonstrated in page 6o, and exem-~
plified in page 115 of this tract, had been applied to the case
‘in question, they would have discovered that an error in the
form* given to the sides of the vessel was the principal cause
of the defective stability, and would have suggested the re-
“medy accordingly ;- or rather would have prevented the neces-
sity of having recourse to it, by previously shewing the ori-
ginal defects in the plan of the ship.
The force of stability by which ships, when inclined round

* Mr. RomME observes, page 108, that the defect of stability in the Scipio was not
occasioned by any want of breadth in the principal section of the véssel; for other
ships of the same force, i. ¢. Le Magnifique, Le Sceptre, Le Minotaur, L’Intrepide,
the breadths of which were the same, or rather less, than that of the Scipio, carried
their sail perfectly well.
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the longer axis from their position of equilibrium through
different angles, endeavour to regain that position, is to be
considered in two points of view respecting the motion of a
vessel at sea ; first, in relation to the resistance by which it
opposes any force that may be applied to incline the ship, for
instance, that of the wind ; in which case the ship’s stability,
and the impulse of the wind, constitute a species of equili-
brium as long as the wind continues of the same intensity.
Secondly, the force of stability is to be considered as operating
on the ship, after the force by which it has been inclined
ceases, to restore the vessel to its upright position ; the ship
being continually impelled by the force of stability, revolves
‘round an horizontal axis, passing through the centre of gra-
vity with an increasing velocity, till it arrives at its upright
position; and afterwards with a velocity continually retarded,
till it arrives at the greatest inclination on the other side.
This rolling of the-ship, with alternate acceleration and re-
tardation of the angular velocity, will evidently depend on
the force by which the angular motion is generated ; that is,
on the force of stability, and its variation corresponding to
the several angular distances of the vessel from its upright po-.
sition ; from this cause arises one of the principal difficulties
in the practice of naval architecture; i e. to give a vessel a.
-sufficient degree of stability, and at the same time to avoid
the inconveniences which proceed from an angular velocity of
rolling, increasing and decreasing too rapidly. It is certain
that the variation of the force of stability depends principally
on the shape given to the sides of the vessel, which admit of
being so constructed (all other circumstances permitting) that
the force shall increase either slowly or rapidly to its limit.
From the preceding investigations we observe that some float-
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ing bodies, during their inclination from o° to go°, pass through
a position of equilibrium, in which the force of stability be-
comes evanescent : in other bodies, no limit of this kind takes
place ; a difference which depends partly on their forms, and
partly on the disposition of the centres of gravity of the solids
and of the immersed volumes. It may be satisfactory to con-
sider, in'a general view, the effects produced on the motion of
ships by the different proportions of their stability while they
are inclined round the longer axes. If a vessel * should be of
a cylindrical form, floating with its axis horizontal, the vertical
sections must necessarily be equal circles: supposing the centre
of gravity of such a cylinder to be situated out of the axis, the
vessel will float permanently with its centre of gravity, and the
centre of the section passing through it, in the same vertical
line: if such a vessel should be inclined from the upright by
external force, it will be impelled in a contrary direction by the
force of stability, which increases exactly in the proportion of
the sine of the angle of inclination : it is plain, therefore, that
-a vessel of this description, during its inclination by heeling,
cannot arrive at any limit where the force of stability is eva-
nescent; on the cbntrary, it must continually increase until the
inclination is augmented to go°, where it will have become
greater than at any other angle.

Let another case be assumed : suppose the form of the ves-
sel to be a square parallelopiped, floating permanently with one
of the flat surfaces upward ; when this solid has been inclined
round the longer axis through 45 degrees, the stability will be
evanescent, and the least inclination greater than that angle

* This is evidently an hypothetical case, stated with a view of illustrating the
subject.

MDCCXCVI, R
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will cause the vessel to overset: in this case, as the vessel is
gradually inclined from the upright, the stability will first
increase to a maximum, and afterwards decrease ; differing
altogether from the variation of the stability in the preceding
case, when the vessel was supposed to be of a cylindrical form.
Although vessels are usually so constructed that during any
inclination from ©° to go° they do not pass through a po-
sition of equilibrium ; yet there seems reason to suppose
that in some vessels the stability increases to a maximum,
and afterwards decreases when the angle of inclination is
farther augmented : whenever a vessel of this description
should be inclined beyond the angle whére the stability is
greatest, the following consequence must necessarily ensue ;
if the angular velocity should be considerable, the rolling of
the ship will be extended to large angles of inclination, be-
cause when the stability is more and more diminished as the
angle of inclination is augmented, more time will be required
for the diminished force to react against the ponderous mass
of the vessel, in order to restore it to the upright. It is cer-
tain that the angle, as well as the celerity or slowness of rolling,
depend on other elements, as well as on the stability, particu-
larly on the Weight and extent of the masts and sails, and the
position of the ballast and lading : but in comparing the vibra-
tions of the same vessel through different arcs, those elements
are the same, while the force of stability alters continually as
the angles of inclination are increased or diminished.

These alternate vibrations of a ship in rolling have been
deemed analogous to the oscillations of a pendulum ; and in
order to reduce to some kind of measure so essential a quality
of vessels, M. BoucUuEeRr and other writers propose to find a
pendulum isochronal to the oscillations of a ship. This pro-



of floating Bodies, and the Stability of Ships. 123

blem. seems to imply both that the pendulum sought, and
the vessel itself, shall vibrate in arcs that are extremely small ;
for otherwise the analogy altogether fails: no oscillating
body can describe arcs of unequal lengths in equal times, un-
less it is impelled by forces which are in the direct ratio of
‘the distances from the quiescent point; and therefore the os-
cillations of a vessel vibrating in different finite angles are evi-
dently not isochronal with each other, since the force of stabi-
lity varies in a proportion so different from that of the distances
from quiescence ; nor can they be isochronal with any pendu-
lum, unless the arcs of vibration are of evanescent magnitude;
in which case the force of stability being in the direct propor-
tion of the angles of inclination from the upright, has the effect
of producing an equality in the times of oscillation : to ascer-
tain a pendulum vibrating in small arcs which is isochronal to
the oscillations of a vessel, under these restrictions, is a problem
which may be solved with sufficient exactness; but.unless the
limitation that has been mentioned should be specified, it is a
question without the necessary conditions. Mons. BouGUuER*
in his chapter intituled, que les Oscillations sont Isochrones, does
-not expressly mention this limitation, but we must allow it
probable that he conceived it to be implied.

From the reasons that have been stated it seems to follow,
that in order to form a satisfactory opinion of the qualities and
performance of a vessel at sea as depending on the plan of its
construction, the forces of stability at the several angles of in-
clination from o to the greatest limit ought to be ascertaiped,
particularly the measure of the greatest stability, and the angle
of heeling at which it takes place.

* Liv. 1. sect. iii. chap. vii.

Re
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In these general remarks the water’s resistance has not
been considered, which must necessarily have some effect in
retarding the oscillations of the vessel, and more in the larger
arcs than in the smaller: it is however observable, that the
resistance to the rolling of vessels is of a very different kind to
that which is opposed to their progress through the water, in
which case a volume of the fluid proportional to the vessel’s
bulk and velocity is entirely displaced during its motion ;
whereas in the rolling of ships a far less quantity of water suf-
fers an alteration of place by the ship’s oscillations, which
is therefore the less retarded on this account.

Another observation occurs on this subject. The entire
stability of a ship has been shewn to consist of the aggregate
stabilities of the several vertical sections into which it can be
divided. Let it be supposed that the ship has been inclined
round the longer axis through a given angle, and that the
vessel returns through the same angle of inclination by the
force of its stability ; if the forces arising from the several
sections do not act in their due proportion on each side of the
centre of gravity, in respect to the longer axis, the ship will not
return to its position of equilibrium by revolving round the
longer axis; but will be inclined round various successive ho-
rizontal lines between the longer and shorter axes; a cir-
cumstance that must create irregljlar motions and impulses, to
which a vessel in all respects well constructed is not liable.

The theory of statics and mechanics was, I believe, first
applied to explain the construction and management of ves-
sels toward the latter end of the last century, in a work inti-
tuled Théorie de la Construction des Vaisseaux, par P. PauL
HosTE, printed at Lyons in the year 1696. Several eminent
mathematicians have since prosecuted this difficult subject,
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particularly Joun BernouiLLi, BouGuEkR, and the excellent
M. EuLER, whose treatise, intituled Théorie completie de la
Construction & Manceuvre des Vaisseaux, is a work correspond-
ent to the title, entirely theoretical. In this elaborate per-
formance the author has not only endeavoured to explain the
complicated laws which influence the motion of ships at sea,
but proceeds to investigate, on the ground of such data as
the subject affords, the dimensions and position of the most
essential parts of vessels which combine to give them every
possible advantage in the practice of navigation.

Several inquiries are suggested by the perusal of these theo-
retical works; first, whether the proportions and dispositions of
parts in ships resulting from theory have been found to differ
from, or to agree with, those which had been previously esta-
blished in the practice of naval architecture ; secondly, if disa-
-greement should have been discovered, whether any adequate
and satisfactory trials have been made to ascertain the advan-
tages which result from adhering to the constructions pre-
scribed. by practice, compared with those which are conse-
quences of following the deductions from theory ; and lastly,
if any new forms of vessels, disposition of parts, or other va-
rieties of construction, have been discovered by considering
this subject in a theoretical view, and in what degree these
inventions have been found advantageous when applied in
practice.

Exclusive of the application of geometrical principles,* by

* Practical treatises on ship-building have been published by various authors,
particularly by M. CrairpBois, RoMmmE, and FreEp. Cuapman. In these useful
works theory is occasionally applied to explain and illustrate the principles of naval
architecture : but no accounts are to be found in either of these volumes, as far as my
researches extend, by which the construction of vessels, founded on theoretic investi-
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which the forms of vessels and the disposition of their most
essential parts are ascertained, theory may be considered as
bearing to naval architecture a two-fold relation : first, as de-
pending on the pure laws of mechanics, a subject on which
the preceding cursory observations have been offered: se-
condly, the practice of naval architecture is guided, in most
parts of the world, by a species of theory or systematic rule
which individuals form to themselves from experience and ob-
servation alone: it is founded on the experimental knowledge
in naval constructions, which has been transmitted from
preceding times, combined with the more recent improve-
ments, and includes whatever inventions of skill and in-
genuity are applicable to the various machinery that is em-
ployed in the construction and management of vessels: by re-
peated observation on the forms, proportions, and equipment
of ships, and by attention to their excellencies and defects
when afloat at sea, faults are remedied, good qualities are im-
proved, and rules of practice are by degrees established ac-
cording to principles, well perceived and understood, without
much assistance from the theories of mechanics, statics, and
geometry, on which such principles are founded : for in this,
as well as other instances, it is well known that skilful practice,
aided by long experience, arrives at determinations which it is
very difficult (sometimes impossible) for theory to infer: on
the other hand it must be allowed, that pure theory, depend-
ing on the laws of motion, the subject of disquisition in
gation, have been subjected to practical examination during voyages. M. Cuapman,
in page 79 of his work (Paris edit.), expresses the proportions and disposition of parts
in vessels by algebraic quantities, which, however, are not to be mistaken for deduc-
tions from theory ; since the author has not pointed out any mode of investigation, or

train of reasoning, by which those expressions can be deduced from the principles of
mechanics.
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the works of M. EvLERr and BouGUER, is of great importance
to the advancement of this science: for by such investigation,
so far as the data are suflicient, the qualities of vessels are
traced to their true causes, and are explained by general laws ;-
whereas the principles derived from mere observation are
scarcely ever applicable beyond the cases in which they have

been experienced in practice.
Whatever may have been the means by which naval ar-

chitecture rgceives progressive improvement, it seems to be
generally allowed, that the art of constructing vessels has, at
the present period, attained to a degree of perfection far sur-
passing any that has been known to former times, either an-~
cient or modern ; yet it is equally certain, that some prin-
ciples, by which the construction of vessels is materially in-
fluenced, still remain to be developed and explained. It is
frequently remarked by navigators, as well as by naval archi-
tects, that alterations apparently the most trivial, in the form
of a vessel, in the distribution of the ballast, or in the positior
and extent of the masts and sails, will wholly change the qua-
lities of a ship from bad to good, or the reverse. As these
- changes cannot be attributed to fortuitous causes, it is neces-
sary to allow that they are consequences of principles cer-.
tain and definite, though in many cases unknown, or im-
perfectly estimated by conjecture. The proportions and dis-
position of parts, which operate to produce good or bad ef-
fects on the sailing of ships, are probably in these instances so
intricately combined as to make it scarcely possible from mere
observation, however extended and diversified, to account sa-
tisfactorily for changes so remarkable: it must also be ac-
knowledged, that some of the data-on which the theory of
naval architecture is founded, being imperfectly known, parti-
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cularly the laws of the different resistances to the ship’s mo-
tion,* it would be unsafe to rely entirely on deductions a priori
for explaining this subject.

* The laws of resistances, opposed to bodies which move in fluids, and varying in a du-
plicate ratio of the body’s velocities, are demonstrated by Sir Isa ac New Ton,in thesecond
book of the Principiason conditions restrained to the particular case in which the motion
of the resisted body is extremely slow, and the fluid perfectly compressed. On these
conditions, the pressure which resists the motion of the body is exactly balanced by the
pressure on the posterior part, and consequently the only force opposed to the body’s
motion, is the inertia of the fluid, which is displaced while the body moves through it:
for the resistance of friction depending on the body’s velocity must be, in a physical sense,
evanescent, when the motion is very slow. It is evident, that the theory of resistances
founded on these principles ought not to be applied to the solution of cases in which the
velocity is much increased, without great caré and circumspection ; for by the increase of
velocity, three different forces begin tohave operation, of which the New ro~n1an theory
takes no account ; . e. the pressure on the anterior part of the body, the pressure on
the posterior part, and the resistance of friction. The pressure on the anterior part will
evidently be a constant or invariable quantity as long as the moving body continues
-at the same depth. The pressure on the posterior part will depend on the velocity of
the body’s motion, and when that velocity is = o0, the pressure will be precisely equal,
and contrary to that which acts on the anterior part. Moreover, when the body’s velo-
city is equal to that with which the fluid rushes into empty space, the pressure on the
posterior part will be = o, and of consequence all the pressures on the posterior sur-
face, corresponding to the intermediate velocities, must be found between these limits.
When the surfaces of the moving body are smooth, it has been supposed that the effects of
friction are not very considerable. This opinion is however disproved, to the satisfaction
of any one who consults the account of the very accurate and well devised experiments
‘on the motion-of bodies through the water, made under the direction of the committee
of the Society for the Improvement of Naval Architecture, and published by their
order. I have examined these experiments with a good deal of attention, particularly
those which were made on oblong-beams or parallelopipeds, denoted in the account of

‘the experiments by the letters A, B, &c. ; and find, that although the surfaces-of the
-moving body were planed very smooth, the resistance of friction was equal to a weight
of no less than ninety pounds, on .a surface of 258 square feet, when the body moved
with a velocity of & feet in a second. It appears also, by methods of caleulation, founded
_on SirTsaac NrwTon’s rule for drawing a parabolic line through any number of given
points situate in the same plane, and applied to the above-named .experiments, that the
resistance of friction varies in no power of the velocity expressible by less than three di-
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These difficulties will appear still greater, if it be considered
that the tauses which influence the motion of ships at sea are
not separate and independent, but operate on each other, as well
as immediately on the motion of the vessel: thus, if the po-
sition of the centre of gravity is altered by moving the ballast
or lading nearer to the head or stern, this alteration will have
the effect of changing the section of the water, and the form
of the immersed part of the vessel ; on which account; the
resistance opposed by the water to the ship’s motion must ne-
cessarily bevchanged; the centre of gravity of the part im-
mersed will also be differently situated, which must combine

mensions thereof, that is, if z is put to denote the resistance of friction, and » to denote
the velocity, the resistance requires an equation of the form z = au + bu* 4 cu3; in
which a, b, and ¢, are invariable quantities: the force also of pressure on the posterior
surface is expressed by an equation equally complex: to these difficulties another is to be
added, which is, that the resistance varies with the depth of the moving body, as appears
by the experiments referred to. On these considerations it seems manifest, that investiga-
tions on the subject of naval architecture, founded on the theory of motion, which takes
into account the resistances of the water, considering the velocity to be such as ships
usually sail with, must involve algebraic expressions so complicated, as to make it very
difficult, perhaps impossible, to infer any useful practical conclusions from this mode of
considering the subject. EuLEer and BouGukr, the principal authors who have at-
tempted to apply the theory of resistances to naval architecture, suppose the resistance
to be in a duplicate ratio of the velocities; a law evidently different from that accord.
ing to which vessels at sea are opposed by the medium in which they move: and one
of these most eminent authors,* doubts whether this theory is not too imperfect to be
relied on, when it is applied to ascertain the motion of ships at sea. Notwithstanding
the impediments which arise from the complicated laws of resistance and friction, the
general principles investigated in the works of these authors are no doubt capable of
being applied to the solution of many difficulties which occur in considering the subject
of naval architecture, due allowance being made for those irregular forces which cannot
be included in the theoretic solutions.

* EvLer. Théorie compleite de la Construction des Vaisseaux, English edition,
P- 93> 94.
MDCCXCVI. S
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with the alteration of the centre of gravity of the vessel, and
the section of the water, to increase or diminish the stability of
the ship; and it must be added, that the inclination of the
masts and sails to the horizon, and the direction in which the
wind impinges on them, will suffer alteration from the same
cause.

Although theory alone may not be adequate to the solution
of these difficulties, yet, when combined with experiments and
obervations, it may be probably employed with great advantage
in these researches. If the proportions and dimensions adopted
in the construction of individual vessels are obtained by exact
geometrical mensurations, and calculations founded on them,
and observations are made on the performance of these ves-
sels at sea; experiménts of this kind, sufficiently diversified
and extended, seem to be the proper grounds on which theory
may be effectually applied in developing and reducing to sys-
tem those intricate, subtile, and hitherto unperceived causes,
which contribute to impart the greatest degree of excellence
to vessels of every species and description. Since naval archi-
tecture is reckoned amongst the practical branches of science,
every voyage may be considered as an experiment, or rather as.
a series of experiments, from which useful truths are to be
inferred towards perfecting the art of constructing vessels:
but inferences of this kind, consistently with the preceding
remark, cannot well be obtained, except by acquiring a per-
fect knowledge of all the proportions and dimensions of each
part of the ship; and secondly, by making and recording suf-
ficiently numerous observations on the qualities of the vessel,
in all the varieties of situation to which a ship is usually liable
in the practice of navigation.
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ERRATA.

Page 52, line 26, dele practically.

Page 61, line 5, for in general is, read is general, being. ‘

Page 65, line 8, for point X, read horizontal line drawn through the point X pa-
rallel to the axis of motion.

Page 77, lines 1 and g, for WGS, read UGS; and line 24, for WGO, read UGO.

Page 78, line 2, for VW, read VU. k

Page 85, line 26, for B, read R.

Page g1, last line, Jor QA, read NF.

Page 96, last line, for prop. iii. read prop. ii.

Page 97, line 18, for GZ, read TZ.

Page 100, line 12, for horizontal line, read indefinite horizontal line.

Page 107, line 3 and 4, dele HD — HA.

Page 115, line 5, for AB — PX, read WP — PX, fig. 11. and 28.

Page 124, line 11, for is, read are.

Note to be added to page 104; last line, to the word ¢ inquiry.”

The following remark on the propositions and demonstrations of AroLLONIUS
PErRGEUS, equailly, or rather more applicable to those of ARCHIMEDES, is extracted
from Dr. WaLLis’s Algebra. '

«¢ Et quidem mieritd censeri posset ille, magnus geometra, et prodigiose, tum phan-
¢ tasiz tum memoriz vir, si possibile putemus ut potuerit ille propositiones et demon-
¢« strationes perplexas, eo ordine quo ad nos perveniunt invenire, absque cujusmodi
«¢ aliqué inveniendi arte qualis est quam nos algebram dicimus.”

Dr. Warwris’s Algebra, cap. LXXVI.

Page 124, line 26, note to the words ¢ first applied.”

PerEe Parpies and Chevalier REnaup published some partial observations on the
theory of naval architecture rather before this period: but the treatise of M. L’HosTE
seems to be the first work in which this subject is considered systematically, and at

length.

Page 127, line 8, for whatever may have been, read whatever may be.
Page 135, line 7, insert the Rev. before Nevil.

Page 202, lines 28, 30, and 31, for w', w?, w?, read o', o* o°,

Page 205, line 27, for w, read o.
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